These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23066638)

  • 1. Molecule-by-molecule writing using a focused electron beam.
    van Dorp WF; Zhang X; Feringa BL; Hansen TW; Wagner JB; De Hosson JT
    ACS Nano; 2012 Nov; 6(11):10076-81. PubMed ID: 23066638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable sub-nanometer sculpting of graphene with electron beams.
    Börrnert F; Fu L; Gorantla S; Knupfer M; Büchner B; Rümmeli MH
    ACS Nano; 2012 Nov; 6(11):10327-34. PubMed ID: 23110721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conduction tuning of graphene based on defect-induced localization.
    Nakaharai S; Iijima T; Ogawa S; Suzuki S; Li SL; Tsukagoshi K; Sato S; Yokoyama N
    ACS Nano; 2013 Jul; 7(7):5694-700. PubMed ID: 23786356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.
    Kotakoski J; Santos-Cottin D; Krasheninnikov AV
    ACS Nano; 2012 Jan; 6(1):671-6. PubMed ID: 22188561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography.
    Liu G; Wu Y; Lin YM; Farmer DB; Ott JA; Bruley J; Grill A; Avouris P; Pfeiffer D; Balandin AA; Dimitrakopoulos C
    ACS Nano; 2012 Aug; 6(8):6786-92. PubMed ID: 22780305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron emission from individual graphene nanoribbons driven by internal electric field.
    Wei X; Bando Y; Golberg D
    ACS Nano; 2012 Jan; 6(1):705-11. PubMed ID: 22117647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanometer-scale lithography on microscopically clean graphene.
    van Dorp WF; Zhang X; Feringa BL; Wagner JB; Hansen TW; De Hosson JT
    Nanotechnology; 2011 Dec; 22(50):505303. PubMed ID: 22108050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of individually tuned nanomagnets for Nanomagnet Logic by direct write focused electron beam induced deposition.
    Gavagnin M; Wanzenboeck HD; Belić D; Bertagnolli E
    ACS Nano; 2013 Jan; 7(1):777-84. PubMed ID: 23227975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective n-type doping of graphene by photo-patterned gold nanoparticles.
    Huh S; Park J; Kim KS; Hong BH; Kim SB
    ACS Nano; 2011 May; 5(5):3639-44. PubMed ID: 21466191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.
    Kim S; Russell M; Kulkarni DD; Henry M; Kim S; Naik RR; Voevodin AA; Jang SS; Tsukruk VV; Fedorov AG
    ACS Nano; 2016 Jan; 10(1):1042-9. PubMed ID: 26741645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
    Liu Y; Chen X; Noh KW; Dillon SJ
    Nanotechnology; 2012 Sep; 23(38):385302. PubMed ID: 22948193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures.
    Belić D; Shawrav MM; Gavagnin M; Stöger-Pollach M; Wanzenboeck HD; Bertagnolli E
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2467-79. PubMed ID: 25545798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly conducting patterned Pd nanowires by direct-write electron beam lithography.
    Bhuvana T; Kulkarni GU
    ACS Nano; 2008 Mar; 2(3):457-62. PubMed ID: 19206570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manifold enhancement of electron beam induced deposition rate at grazing incidence.
    Sychugov I; Nakayama Y; Mitsuishi K
    Nanotechnology; 2010 Jan; 21(2):025303. PubMed ID: 19955608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T; Liu S; Luo Y; Lu W; Wang L; Sun X
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.
    Williams G; Seger B; Kamat PV
    ACS Nano; 2008 Jul; 2(7):1487-91. PubMed ID: 19206319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocontrolled molecular structural transition and doping in graphene.
    Peimyoo N; Li J; Shang J; Shen X; Qiu C; Xie L; Huang W; Yu T
    ACS Nano; 2012 Oct; 6(10):8878-86. PubMed ID: 22966836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic resolution imaging of the edges of catalytically etched suspended few-layer graphene.
    Schäffel F; Wilson M; Bachmatiuk A; Rümmeli MH; Queitsch U; Rellinghaus B; Briggs GA; Warner JH
    ACS Nano; 2011 Mar; 5(3):1975-83. PubMed ID: 21344881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-driven ring confinement in a graphene sheet: assessing conditions for bound state solutions.
    Villegas-Lelovsky L; Trallero-Giner C; Lopez-Richard V; Marques GE; Villegas CE; Tavares MR
    Nanotechnology; 2012 Sep; 23(38):385201. PubMed ID: 22947852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental proximity effects in focused electron beam induced deposition.
    Plank H; Smith DA; Haber T; Rack PD; Hofer F
    ACS Nano; 2012 Jan; 6(1):286-94. PubMed ID: 22181556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.