These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23067327)

  • 1. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.
    Qadir K; Joo SH; Mun BS; Butcher DR; Renzas JR; Aksoy F; Liu Z; Somorjai GA; Park JY
    Nano Lett; 2012 Nov; 12(11):5761-8. PubMed ID: 23067327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of O2, CO, and NO on surface segregation in a Rh0.5Pd0.5 bulk crystal and comparison to Rh0.5Pd0.5 nanoparticles.
    Grass ME; Park M; Aksoy F; Zhang Y; Kunz M; Liu Z; Mun BS
    Langmuir; 2010 Nov; 26(21):16362-7. PubMed ID: 20575545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.
    Zhang J; Sun B; Huang Y; Guan X
    Chemosphere; 2015 Dec; 141():154-61. PubMed ID: 26196405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles.
    Park JY; Zhang Y; Grass M; Zhang T; Somorjai GA
    Nano Lett; 2008 Feb; 8(2):673-7. PubMed ID: 18225941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation.
    Joo SH; Park JY; Renzas JR; Butcher DR; Huang W; Somorjai GA
    Nano Lett; 2010 Jul; 10(7):2709-13. PubMed ID: 20568824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel catalytically active Pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans.
    Omajali JB; Gomez-Bolivar J; Mikheenko IP; Sharma S; Kayode B; Al-Duri B; Banerjee D; Walker M; Merroun ML; Macaskie LE
    Sci Rep; 2019 Mar; 9(1):4715. PubMed ID: 30886177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ observations of catalytic surface reactions with soft x-rays under working conditions.
    Toyoshima R; Kondoh H
    J Phys Condens Matter; 2015 Mar; 27(8):083003. PubMed ID: 25667354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiers Memorial Lecture. Role of perimeter interfaces in catalysis by gold nanoparticles.
    Haruta M
    Faraday Discuss; 2011; 152():11-32; discussion 99-120. PubMed ID: 22455036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability.
    Kusada K; Kobayashi H; Ikeda R; Kubota Y; Takata M; Toh S; Yamamoto T; Matsumura S; Sumi N; Sato K; Nagaoka K; Kitagawa H
    J Am Chem Soc; 2014 Feb; 136(5):1864-71. PubMed ID: 24455969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular catalysis science: Perspective on unifying the fields of catalysis.
    Ye R; Hurlburt TJ; Sabyrov K; Alayoglu S; Somorjai GA
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5159-66. PubMed ID: 27114536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete oxidation of ethylene over supported gold nanoparticle catalysts.
    Ahn HG; Choi BM; Lee DJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3599-603. PubMed ID: 17252819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways.
    Blume R; Hävecker M; Zafeiratos S; Teschner D; Vass E; Schnörch P; Knop-Gericke A; Schlögl R; Lizzit S; Dudin P; Barinov A; Kiskinova M
    Phys Chem Chem Phys; 2007 Jul; 9(27):3648-57. PubMed ID: 17612729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon resonant enhancement of carbon monoxide catalysis.
    Hung WH; Aykol M; Valley D; Hou W; Cronin SB
    Nano Lett; 2010 Apr; 10(4):1314-8. PubMed ID: 20350008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles.
    An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA
    J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.