BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23067368)

  • 1. Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain.
    Fiegland LR; Garst AD; Batey RT; Nesbitt DJ
    Biochemistry; 2012 Nov; 51(45):9223-33. PubMed ID: 23067368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation.
    Blouin S; Chinnappan R; Lafontaine DA
    Nucleic Acids Res; 2011 Apr; 39(8):3373-87. PubMed ID: 21169337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Cooperativity between Lysine and Potassium in the Lysine Riboswitch: Single-Molecule Kinetic and Thermodynamic Studies.
    Marton Menendez A; Nesbitt DJ
    J Phys Chem B; 2023 Mar; 127(11):2430-2440. PubMed ID: 36916791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control.
    Blouin S; Lafontaine DA
    RNA; 2007 Aug; 13(8):1256-67. PubMed ID: 17585050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of the adenine riboswitch.
    Lemay JF; Penedo JC; Tremblay R; Lilley DM; Lafontaine DA
    Chem Biol; 2006 Aug; 13(8):857-68. PubMed ID: 16931335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of lysine binding residues in the global folding of the lysC riboswitch.
    Smith-Peter E; Lamontagne AM; Lafontaine DA
    RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine.
    Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK
    Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine-Dependent Entropy Effects in the
    Marton Menendez A; Nesbitt DJ
    J Phys Chem B; 2022 Jan; 126(1):69-79. PubMed ID: 34958583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.