BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23068157)

  • 1. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum.
    Li X; Wang Z; Liu H; Yu H
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of toxic action mechanisms of phenols for imbalanced data with Random Forest learner.
    Chen J; Tang YY; Fang B; Guo C
    J Mol Graph Model; 2012 May; 35():21-7. PubMed ID: 22481075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute toxicity and n-octanol/water partition coefficients of substituted thiophenols: determination and QSAR analysis.
    Shi JQ; Cheng J; Wang FY; Flamm A; Wang ZY; Yang X; Gao SX
    Ecotoxicol Environ Saf; 2012 Apr; 78():134-41. PubMed ID: 22154146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Straightforward MIA-QSTR evaluation of environmental toxicities of aromatic aldehydes to Tetrahymena pyriformis.
    Asadollahi-Baboli M
    SAR QSAR Environ Res; 2013; 24(12):1041-50. PubMed ID: 24313440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.
    Abbasitabar F; Zare-Shahabadi V
    Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reply to comment on "Acute toxicity and n-octanol/water partition coefficients of substituted thiophenols: determination and QSAR analysis".
    Shi JQ; Yang X
    Ecotoxicol Environ Saf; 2013 Jul; 93():199. PubMed ID: 23611503
    [No Abstract]   [Full Text] [Related]  

  • 12. Comment on "acute toxicity and n-octanol/water partition coefficients of substituted thiophenols: determination and QSAR analysis [Shi et al., Ecotoxicol. Environ. Saf. 78 (2012) 134-141]".
    Rayne S
    Ecotoxicol Environ Saf; 2013 Jul; 93():198. PubMed ID: 23582131
    [No Abstract]   [Full Text] [Related]  

  • 13. QSTR with extended topochemical atom (ETA) indices. 9. Comparative QSAR for the toxicity of diverse functional organic compounds to Chlorella vulgaris using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2007 Nov; 70(1):1-12. PubMed ID: 17765287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of combined toxicity of phenols and lead to Photobacterium phosphoreum and quantitative structure-activity relationships.
    Su LM; Zhao YH; Yuan X; Mu CF; Wang N; Yan JC
    Bull Environ Contam Toxicol; 2010 Mar; 84(3):311-4. PubMed ID: 20043147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of bond dissociation enthalpy of antioxidant phenols by support vector machine.
    Nantasenamat C; Isarankura-Na-Ayudhya C; Naenna T; Prachayasittikul V
    J Mol Graph Model; 2008 Sep; 27(2):188-96. PubMed ID: 18499490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors.
    Cormanich RA; Goodarzi M; Freitas MP
    Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines.
    Niazi A; Jameh-Bozorghi S; Nori-Shargh D
    J Hazard Mater; 2008 Mar; 151(2-3):603-9. PubMed ID: 17630186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression.
    Du H; Wang J; Hu Z; Yao X; Zhang X
    J Agric Food Chem; 2008 Nov; 56(22):10785-92. PubMed ID: 18950187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure-property relationship studies on electrochemical degradation of substituted phenols using a support vector machine.
    Yuan S; Xiao M; Zheng G; Tian M; Lu X
    SAR QSAR Environ Res; 2006 Oct; 17(5):473-81. PubMed ID: 17050187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.