BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23068888)

  • 1. Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles.
    Xiong J; Wu XD; Xue QJ
    J Colloid Interface Sci; 2013 Jan; 390(1):41-6. PubMed ID: 23068888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix.
    Tiwari AD; Mishra AK; Mishra SB; Kuvarega AT; Mamba BB
    Carbohydr Polym; 2013 Feb; 92(2):1402-7. PubMed ID: 23399170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles.
    El-Shishtawy RM; Asiri AM; Al-Otaibi MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1505-10. PubMed ID: 21703920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties.
    Wang Y; Asefa T
    Langmuir; 2010 May; 26(10):7469-74. PubMed ID: 20148597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles.
    Bashir O; Hussain S; AL-Thabaiti SA; Khan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():265-73. PubMed ID: 25615680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells.
    Harne S; Sharma A; Dhaygude M; Joglekar S; Kodam K; Hudlikar M
    Colloids Surf B Biointerfaces; 2012 Jun; 95():284-8. PubMed ID: 22483347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract.
    Yallappa S; Manjanna J; Sindhe MA; Satyanarayan ND; Pramod SN; Nagaraja K
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():108-15. PubMed ID: 23562740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Click synthesis of podand triazole-linked gold nanoparticles as highly selective and sensitive colorimetric probes for lead(II) ions.
    Li H; Zheng Q; Han C
    Analyst; 2010 Jun; 135(6):1360-4. PubMed ID: 20358034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose.
    Chen W; Chen J; Feng YB; Hong L; Chen QY; Wu LF; Lin XH; Xia XH
    Analyst; 2012 Apr; 137(7):1706-12. PubMed ID: 22349179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions.
    Kim YY; Walsh D
    Nanoscale; 2010 Feb; 2(2):240-7. PubMed ID: 20644800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coenzyme based synthesis of silver nanocrystals.
    Tanvir S; Oudet F; Pulvin S; Anderson WA
    Enzyme Microb Technol; 2012 Sep; 51(4):231-6. PubMed ID: 22883558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):327-31. PubMed ID: 21030295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modifications of CuO nanoparticles using Ethylene diamine tetra acetic acid as a capping agent by sol-gel routine.
    Jayaprakash J; Srinivasan N; Chandrasekaran P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():363-8. PubMed ID: 24412789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties.
    Gunalan S; Sivaraj R; Venckatesh R
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1140-4. PubMed ID: 22940049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders.
    Lv W; Luo Z; Yang H; Liu B; Weng W; Liu J
    Ultrason Sonochem; 2010 Feb; 17(2):344-51. PubMed ID: 19570706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity.
    Litvin VA; Minaev BF
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():115-22. PubMed ID: 23466321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of plant-based phenol derivatives on the formation of Cu and Ag nanoparticles.
    Jacob JA; Biswas N; Mukherjee T; Kapoor S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):49-53. PubMed ID: 21621984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent.
    Jin M; He G; Zhang H; Zeng J; Xie Z; Xia Y
    Angew Chem Int Ed Engl; 2011 Nov; 50(45):10560-4. PubMed ID: 21928444
    [No Abstract]   [Full Text] [Related]  

  • 19. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract.
    Subba Rao Y; Kotakadi VS; Prasad TN; Reddy AV; Sai Gopal DV
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():156-9. PubMed ID: 23257344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ time-resolved XAFS study on the formation mechanism of Cu nanoparticles using poly(N-vinyl-2-pyrrolidone) as a capping agent.
    Nishimura S; Takagaki A; Maenosono S; Ebitani K
    Langmuir; 2010 Mar; 26(6):4473-9. PubMed ID: 20039605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.