These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 23068992)
1. An eco-physiological model of the impact of temperature on Aedes aegypti life history traits. Padmanabha H; Correa F; Legros M; Nijhout HF; Lord C; Lounibos LP J Insect Physiol; 2012 Dec; 58(12):1597-608. PubMed ID: 23068992 [TBL] [Abstract][Full Text] [Related]
2. A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Otero M; Solari HG; Schweigmann N Bull Math Biol; 2006 Nov; 68(8):1945-74. PubMed ID: 16832731 [TBL] [Abstract][Full Text] [Related]
3. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Yang HM; Macoris ML; Galvani KC; Andrighetti MT; Wanderley DM Epidemiol Infect; 2009 Aug; 137(8):1188-202. PubMed ID: 19192322 [TBL] [Abstract][Full Text] [Related]
4. Food as a limiting factor for Aedes aegypti in water-storage containers. Arrivillaga J; Barrera R J Vector Ecol; 2004 Jun; 29(1):11-20. PubMed ID: 15266737 [TBL] [Abstract][Full Text] [Related]
5. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Focks DA; Brenner RJ; Hayes J; Daniels E Am J Trop Med Hyg; 2000 Jan; 62(1):11-8. PubMed ID: 10761719 [TBL] [Abstract][Full Text] [Related]
6. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Mohammed A; Chadee DD Acta Trop; 2011 Jul; 119(1):38-43. PubMed ID: 21549680 [TBL] [Abstract][Full Text] [Related]
7. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings. Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536 [TBL] [Abstract][Full Text] [Related]
8. Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. van Uitregt VO; Hurst TP; Wilson RS J Anim Ecol; 2012 Jan; 81(1):108-15. PubMed ID: 21714787 [TBL] [Abstract][Full Text] [Related]
9. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Farjana T; Tuno N; Higa Y Med Vet Entomol; 2012 Jun; 26(2):210-7. PubMed ID: 21781139 [TBL] [Abstract][Full Text] [Related]
10. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Morales Vargas RE; Ya-Umphan P; Phumala-Morales N; Komalamisra N; Dujardin JP Infect Genet Evol; 2010 May; 10(4):580-5. PubMed ID: 20123039 [TBL] [Abstract][Full Text] [Related]
11. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Sasmita HI; Tu WC; Bong LJ; Neoh KB Parasit Vectors; 2019 Dec; 12(1):578. PubMed ID: 31823817 [TBL] [Abstract][Full Text] [Related]
12. Seasonal and nonseasonal dynamics of Aedes aegypti in Rio de Janeiro, Brazil: fitting mathematical models to trap data. Lana RM; Carneiro TG; Honório NA; Codeço CT Acta Trop; 2014 Jan; 129():25-32. PubMed ID: 23933186 [TBL] [Abstract][Full Text] [Related]
13. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Otero M; Solari HG Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133 [TBL] [Abstract][Full Text] [Related]
14. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Angel B; Joshi V J Vector Borne Dis; 2008 Mar; 45(1):56-9. PubMed ID: 18399318 [TBL] [Abstract][Full Text] [Related]
15. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Padmanabha H; Lord CC; Lounibos LP Med Vet Entomol; 2011 Dec; 25(4):445-53. PubMed ID: 21410734 [TBL] [Abstract][Full Text] [Related]
16. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. Strickman D; Kittayapong P Am J Trop Med Hyg; 2003 Feb; 68(2):209-17. PubMed ID: 12641413 [TBL] [Abstract][Full Text] [Related]
17. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. Carrington LB; Armijos MV; Lambrechts L; Barker CM; Scott TW PLoS One; 2013; 8(3):e58824. PubMed ID: 23520534 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines. Mahilum MM; Ludwig M; Madon MB; Becker N J Vector Ecol; 2005 Dec; 30(2):277-83. PubMed ID: 16599163 [TBL] [Abstract][Full Text] [Related]
19. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201 [TBL] [Abstract][Full Text] [Related]
20. Modeling the transmission dynamics of dengue fever: implications of temperature effects. Chen SC; Hsieh MH Sci Total Environ; 2012 Aug; 431():385-91. PubMed ID: 22705874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]