These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23069334)

  • 1. Enhanced transformation of diphenylarsinic acid in soil under sulfate-reducing conditions.
    Guan L; Hisatomi S; Fujii K; Nonaka M; Harada N
    J Hazard Mater; 2012 Nov; 241-242():355-62. PubMed ID: 23069334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.
    Hisatomi S; Guan L; Nakajima M; Fujii K; Nonaka M; Harada N
    J Hazard Mater; 2013 Nov; 262():25-30. PubMed ID: 24007995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.
    Zhu M; Tu C; Hu X; Zhang H; Zhang L; Wei J; Li Y; Luo Y; Christie P
    Sci Total Environ; 2016 Nov; 569-570():1579-1586. PubMed ID: 27395078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of diphenylarsinic acid in agricultural soils.
    Maejima Y; Arao T; Baba K
    J Environ Qual; 2011; 40(1):76-82. PubMed ID: 21488495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.
    Guan L; Shiiya A; Hisatomi S; Fujii K; Nonaka M; Harada N
    Biodegradation; 2015 Feb; 26(1):29-38. PubMed ID: 25228086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting effects of iron reduction on thionation of diphenylarsinic acid in a biostimulated Acrisol.
    Zhu M; Luo Y; Cheng N; Yang R; Zhang J; Zhang M; Christie P
    Environ Sci Pollut Res Int; 2020 May; 27(14):16646-16655. PubMed ID: 32130633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of arylarsenic compounds by microorganisms.
    Nakamiya K; Nakayama T; Ito H; Edmonds JS; Shibata Y; Morita M
    FEMS Microbiol Lett; 2007 Sep; 274(2):184-8. PubMed ID: 17697081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice.
    Arao T; Maejima Y; Baba K
    Environ Sci Technol; 2009 Feb; 43(4):1097-101. PubMed ID: 19320164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties.
    Wang AN; Teng Y; Hu XF; Wu LH; Huang YJ; Luo YM; Christie P
    Sci Total Environ; 2016 Jan; 541():348-355. PubMed ID: 26410709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of diphenylarsinic acid to arsenic acid by novel soil bacteria isolated from contaminated soil.
    Harada N; Takagi K; Baba K; Fujii K; Iwasaki A
    Biodegradation; 2010 Jun; 21(3):491-9. PubMed ID: 19949836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural attenuation potential of phenylarsenicals in anoxic groundwaters.
    Hempel M; Daus B; Vogt C; Weiss H
    Environ Sci Technol; 2009 Sep; 43(18):6989-95. PubMed ID: 19806732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils.
    Wang A; Li S; Teng Y; Liu W; Wu L; Zhang H; Huang Y; Luo Y; Christie P
    J Environ Sci (China); 2013 Jun; 25(6):1172-9. PubMed ID: 24191607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of diphenylarsinic-acid-contaminated soil by Pteris vittata associated with Phyllobacterium myrsinacearum RC6b.
    Teng Y; Feng S; Ren W; Zhu L; Ma W; Christie P; Luo Y
    Int J Phytoremediation; 2017 May; 19(5):463-469. PubMed ID: 27739905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities.
    Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y
    J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.
    Wei M; Yamada T; Yamano S; Kato M; Kakehashi A; Fujioka M; Tago Y; Kitano M; Wanibuchi H
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):1-9. PubMed ID: 23999541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece.
    Vaxevanidou K; Giannikou S; Papassiopi N
    J Hazard Mater; 2012 Nov; 241-242():307-15. PubMed ID: 23062509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione plays a role in regulating the formation of toxic reactive intermediates from diphenylarsinic acid.
    Kinoshita K; Ochi T; Suzuki T; Kita K; Kaise T
    Toxicology; 2006 Aug; 225(2-3):142-9. PubMed ID: 16793189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urine analysis of patients exposed to phenylarsenic compounds via accidental pollution.
    Kinoshita K; Noguchi A; Ishii K; Tamaoka A; Ochi T; Kaise T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 May; 867(2):179-88. PubMed ID: 18468496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of glutathione on the cytotoxic effects and cellular uptake of diphenylarsinic acid, a degradation product of chemical warfare agents.
    Ochi T; Kinoshita K; Suzuki T; Miyazaki K; Noguchi A; Kaise T
    Arch Toxicol; 2006 Aug; 80(8):486-91. PubMed ID: 16496129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-effect relationship in the down-regulation of glutaminase in cultured human cells by phenylarsenic compounds.
    Kita K; Sato M; Suzuki T; Ochi T
    Toxicology; 2009 Apr; 258(2-3):157-63. PubMed ID: 19428935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.