These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23070042)

  • 1. Anticancer metallodrug research analytically painting the "omics" picture--current developments and future trends.
    Groessl M; Hartinger CG
    Anal Bioanal Chem; 2013 Feb; 405(6):1791-808. PubMed ID: 23070042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitumor Metallodrugs that Target Proteins.
    Sullivan MP; Holtkamp HU; Hartinger CG
    Met Ions Life Sci; 2018 Feb; 18():. PubMed ID: 29394032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemo-genetic optimization of DNA recognition by metallodrugs using a presenter-protein strategy.
    Zimbron JM; Sardo A; Heinisch T; Wohlschlager T; Gradinaru J; Massa C; Schirmer T; Creus M; Ward TR
    Chemistry; 2010 Nov; 16(43):12883-9. PubMed ID: 20878805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs.
    Gabbiani C; Magherini F; Modesti A; Messori L
    Anticancer Agents Med Chem; 2010 May; 10(4):324-37. PubMed ID: 20380635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of metallomics and proteomics to study the effects of the metallodrug RAPTA-T on human cancer cells.
    Wolters DA; Stefanopoulou M; Dyson PJ; Groessl M
    Metallomics; 2012 Nov; 4(11):1185-96. PubMed ID: 23014849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in clinical oncoproteomics.
    Jain KK
    J BUON; 2007 Sep; 12 Suppl 1():S31-8. PubMed ID: 17935275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity.
    Brabec V; Nováková O
    Drug Resist Updat; 2006 Jun; 9(3):111-22. PubMed ID: 16790363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming cisplatin resistance using gold(III) mimics: anticancer activity of novel gold(III) polypyridyl complexes.
    Palanichamy K; Sreejayan N; Ontko AC
    J Inorg Biochem; 2012 Jan; 106(1):32-42. PubMed ID: 22112837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics for identifying mechanisms and biomarkers of drug resistance in cancer.
    Li XH; Li C; Xiao ZQ
    J Proteomics; 2011 Nov; 74(12):2642-9. PubMed ID: 21964283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallointercalators and Metalloinsertors: Structural Requirements for DNA Recognition and Anticancer Activity.
    Schatzschneider U
    Met Ions Life Sci; 2018 Feb; 18():. PubMed ID: 29394033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group 9 organometallic compounds for therapeutic and bioanalytical applications.
    Ma DL; Chan DS; Leung CH
    Acc Chem Res; 2014 Dec; 47(12):3614-31. PubMed ID: 25369127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a Novel Metallomics Tool to Probe the Fate of Metal-Based Anticancer Drugs in Blood Plasma: Potential, Challenges and Prospects.
    Sarpong-Kumankomah S; Gailer J
    Curr Top Med Chem; 2021; 21(1):48-58. PubMed ID: 32600232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs.
    Steel TR; Hartinger CG
    Metallomics; 2020 Nov; 12(11):1627-1636. PubMed ID: 33063808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs.
    Hartinger CG; Groessl M; Meier SM; Casini A; Dyson PJ
    Chem Soc Rev; 2013 Jul; 42(14):6186-99. PubMed ID: 23660626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, crystal structure and antiproliferative activity of Cu(II) nalidixic acid-DACH conjugate: comparative in vitro DNA/RNA binding profile, cleavage activity and molecular docking studies.
    Arjmand F; Yousuf I; Hadda Tb; Toupet L
    Eur J Med Chem; 2014 Jun; 81():76-88. PubMed ID: 24826817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic Voltammetric DNA Binding Investigations on Some Anticancer Potential Metal Complexes: a Review.
    Arshad N; Farooqi SI
    Appl Biochem Biotechnol; 2018 Dec; 186(4):1090-1110. PubMed ID: 29934844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of anticancer agents: wizardry with osmium.
    Hanif M; Babak MV; Hartinger CG
    Drug Discov Today; 2014 Oct; 19(10):1640-8. PubMed ID: 24955838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation metal anticancer complexes: multitargeting via redox modulation.
    Romero-Canelón I; Sadler PJ
    Inorg Chem; 2013 Nov; 52(21):12276-91. PubMed ID: 23879584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering molecular determinants of chemotherapy in gastrointestinal malignancy using systems biology approaches.
    Lin LL; Huang HC; Juan HF;
    Drug Discov Today; 2014 Sep; 19(9):1402-9. PubMed ID: 24793142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.