These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23070525)

  • 1. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms.
    Torgersen J; Ovsianikov A; Mironov V; Pucher N; Qin X; Li Z; Cicha K; Machacek T; Liska R; Jantsch V; Stampfl J
    J Biomed Opt; 2012 Oct; 17(10):105008. PubMed ID: 23070525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Photon Polymerized Poly(2-Ethyl-2-Oxazoline) Hydrogel 3D Microstructures with Tunable Mechanical Properties for Tissue Engineering.
    Czich S; Wloka T; Rothe H; Rost J; Penzold F; Kleinsteuber M; Gottschaldt M; Schubert US; Liefeith K
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33142860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Simple to Architecturally Complex Hydrogel Scaffolds for Cell and Tissue Engineering Applications: Opportunities Presented by Two-Photon Polymerization.
    Song J; Michas C; Chen CS; White AE; Grinstaff MW
    Adv Healthc Mater; 2020 Jan; 9(1):e1901217. PubMed ID: 31746140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser photofabrication of cell-containing hydrogel constructs.
    Ovsianikov A; Mühleder S; Torgersen J; Li Z; Qin XH; Van Vlierberghe S; Dubruel P; Holnthoner W; Redl H; Liska R; Stampfl J
    Langmuir; 2014 Apr; 30(13):3787-94. PubMed ID: 24033187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic Carbazole-Based Water-Soluble Two-Photon Photoinitiator and the Fabrication of Biocompatible 3D Hydrogel Scaffold.
    Gao W; Chao H; Zheng YC; Zhang WC; Liu J; Jin F; Dong XZ; Liu YH; Li SJ; Zheng ML
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27796-27805. PubMed ID: 34102846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.
    Käpylä E; Sedlačík T; Aydogan DB; Viitanen J; Rypáček F; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():280-9. PubMed ID: 25175215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions.
    Zheng YC; Zhao YY; Zheng ML; Chen SL; Liu J; Jin F; Dong XZ; Zhao ZS; Duan XM
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1782-1789. PubMed ID: 30608644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional microfabrication by two-photon polymerization technique.
    Ovsianikov A; Chichkov BN
    Methods Mol Biol; 2012; 868():311-25. PubMed ID: 22692619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon.
    Zuo Y; Liu X; Wei D; Sun J; Xiao W; Zhao H; Guo L; Wei Q; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10386-94. PubMed ID: 25928732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies.
    Guo JL; Kim YS; Mikos AG
    Biomacromolecules; 2019 Aug; 20(8):2904-2912. PubMed ID: 31282658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon techniques in tissue engineering.
    Schade R; Weiss T; Berg A; Schnabelrauch M; Liefeith K
    Int J Artif Organs; 2010 Apr; 33(4):219-27. PubMed ID: 20458691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation.
    Park J; Choi JH; Kim S; Jang I; Jeong S; Lee JY
    Acta Biomater; 2019 Oct; 97():141-153. PubMed ID: 31352108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel.
    Hasselmann S; Hahn L; Lorson T; Schätzlein E; Sébastien I; Beudert M; Lühmann T; Neubauer JC; Sextl G; Luxenhofer R; Heinrich D
    Mater Horiz; 2021 Nov; 8(12):3334-3344. PubMed ID: 34617095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Cell Alignment Using Two-Photon Direct Laser Writing-Patterned Hydrogels in 2D and 3D.
    Song J; Michas C; Chen CS; White AE; Grinstaff MW
    Macromol Biosci; 2021 May; 21(5):e2100051. PubMed ID: 33738917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronic acid based materials for scaffolding via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Schlie-Wolter S; Chichkov BN
    Biomacromolecules; 2014 Feb; 15(2):650-9. PubMed ID: 24432740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopolymerized water-soluble maleilated chitosan/methacrylated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds.
    Zhou Y; Zhang C; Liang K; Li J; Yang H; Liu X; Yin X; Chen D; Xu W
    Int J Biol Macromol; 2018 Jan; 106():227-233. PubMed ID: 28780418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.