BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23070626)

  • 1. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15.
    Fang H; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Feb; 35(2):245-51. PubMed ID: 23070626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway.
    Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum.
    Wang Z; Chen T; Ma X; Shen Z; Zhao X
    Bioresour Technol; 2011 Feb; 102(4):3934-40. PubMed ID: 21194928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.
    Lee WH; Chin YW; Han NS; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.
    Kim YM; Cho HS; Jung GY; Park JM
    Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase.
    Zhou Y; Nambou K; Wei L; Cao J; Imanaka T; Hua Q
    Biotechnol Lett; 2013 Dec; 35(12):2137-45. PubMed ID: 24062132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli.
    Shimaoka M; Takenaka Y; Kurahashi O; Kawasaki H; Matsui H
    J Biosci Bioeng; 2007 Mar; 103(3):255-61. PubMed ID: 17434429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and physical analyses of the growth rate-dependent regulation of Escherichia coli zwf expression.
    Rowley DL; Pease AJ; Wolf RE
    J Bacteriol; 1991 Aug; 173(15):4660-7. PubMed ID: 1906868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon.
    Lim SJ; Jung YM; Shin HD; Lee YH
    J Biosci Bioeng; 2002; 93(6):543-9. PubMed ID: 16233247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gnd gene encoding a novel 6-phosphogluconate dehydrogenase and its adjacent region of Actinobacillus actinomycetemcomitans chromosomal DNA.
    Yoshida Y; Nakano Y; Yamashita Y; Koga T
    Biochem Biophys Res Commun; 1997 Jan; 230(1):220-5. PubMed ID: 9020051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli.
    Olavarria K; De Ingeniis J; Zielinski DC; Fuentealba M; Muñoz R; McCloskey D; Feist AM; Cabrera R
    Microbiology (Reading); 2014 Dec; 160(Pt 12):2780-2793. PubMed ID: 25246670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli 6-phosphogluconate dehydrogenase aids in tellurite resistance by reducing the toxicant in a NADPH-dependent manner.
    Sandoval JM; Arenas FA; García JA; Díaz-Vásquez WA; Valdivia-González M; Sabotier M; Vásquez CC
    Microbiol Res; 2015 Aug; 177():22-7. PubMed ID: 26211962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 3-O-xylosyl quercetin in Escherichia coli.
    Pandey RP; Malla S; Simkhada D; Kim BG; Sohng JK
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1889-901. PubMed ID: 23053089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in
    Jin XM; Chang YK; Lee JH; Hong SK
    J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ¹³C-metabolic flux analysis for Escherichia coli.
    Matsuoka Y; Shimizu K
    Methods Mol Biol; 2014; 1191():261-89. PubMed ID: 25178796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of pentose phosphate pathway in Ralstoniaeutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate.
    Lee JN; Shin HD; Lee YH
    Biotechnol Prog; 2003; 19(5):1444-9. PubMed ID: 14524705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.