BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23070700)

  • 1. Cholinergic control of the cerebral vasculature in humans.
    Hamner JW; Tan CO; Tzeng YC; Taylor JA
    J Physiol; 2012 Dec; 590(24):6343-52. PubMed ID: 23070700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic neural control of dynamic cerebral autoregulation in humans.
    Zhang R; Zuckerman JH; Iwasaki K; Wilson TE; Crandall CG; Levine BD
    Circulation; 2002 Oct; 106(14):1814-20. PubMed ID: 12356635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sympathetic control of the cerebral vasculature in humans.
    Hamner JW; Tan CO; Lee K; Cohen MA; Taylor JA
    Stroke; 2010 Jan; 41(1):102-9. PubMed ID: 20007920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.
    Seifert T; Fisher JP; Young CN; Hartwich D; Ogoh S; Raven PB; Fadel PJ; Secher NH
    Exp Physiol; 2010 Oct; 95(10):1016-25. PubMed ID: 20660020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic pressure-flow relationship of the cerebral circulation during acute increase in arterial pressure.
    Zhang R; Behbehani K; Levine BD
    J Physiol; 2009 Jun; 587(Pt 11):2567-77. PubMed ID: 19359366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation.
    Ogawa Y; Iwasaki K; Aoki K; Gokan D; Hirose N; Kato J; Ogawa S
    Anesth Analg; 2010 Nov; 111(5):1279-84. PubMed ID: 20881283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α1-Adrenergic receptor control of the cerebral vasculature in humans at rest and during exercise.
    Purkayastha S; Saxena A; Eubank WL; Hoxha B; Raven PB
    Exp Physiol; 2013 Feb; 98(2):451-61. PubMed ID: 23024369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow.
    Saleem S; Teal PD; Howe CA; Tymko MM; Ainslie PN; Tzeng YC
    Am J Physiol Regul Integr Comp Physiol; 2018 Sep; 315(3):R484-R495. PubMed ID: 29668325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cerebrovascular compliance compared with forearm vascular compliance in humans: a pharmacological study.
    Moir ME; Klassen SA; Zamir M; Hamner JW; Tan CO; Shoemaker JK
    Am J Physiol Heart Circ Physiol; 2023 Jan; 324(1):H100-H108. PubMed ID: 36459447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans.
    Anderson GK; Sprick JD; Park FS; Rosenberg AJ; Rickards CA
    Exp Physiol; 2019 Aug; 104(8):1190-1201. PubMed ID: 31090115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca²⁺ channel blockade.
    Tzeng YC; Chan GS; Willie CK; Ainslie PN
    J Physiol; 2011 Jul; 589(Pt 13):3263-74. PubMed ID: 21540346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting human cerebral blood flow responses to augmented blood pressure oscillations.
    Hamner JW; Ishibashi K; Tan CO
    J Physiol; 2019 Mar; 597(6):1553-1564. PubMed ID: 30633356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans.
    Vianna LC; Fadel PJ; Secher NH; Fisher JP
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R597-604. PubMed ID: 25589014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of sevoflurane on dynamic cerebral blood flow autoregulation assessed by spectral and transfer function analysis.
    Ogawa Y; Iwasaki K; Shibata S; Kato J; Ogawa S; Oi Y
    Anesth Analg; 2006 Feb; 102(2):552-9. PubMed ID: 16428560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic autoregulation of cutaneous circulation: differential control in glabrous versus nonglabrous skin.
    Wilson TE; Zhang R; Levine BD; Crandall CG
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H385-91. PubMed ID: 15749747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral blood flow and dynamic cerebral autoregulation during ethanol intoxication and hypercapnia.
    Blaha M; Aaslid R; Douville CM; Correra R; Newell DW
    J Clin Neurosci; 2003 Mar; 10(2):195-8. PubMed ID: 12637048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation.
    Hamner JW; Tan CO
    Stroke; 2014 Jun; 45(6):1771-7. PubMed ID: 24723314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.