BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23070941)

  • 1. Patterned silk film scaffolds for aligned lamellar bone tissue engineering.
    Tien LW; Gil ES; Park SH; Mandal BB; Kaplan DL
    Macromol Biosci; 2012 Dec; 12(12):1671-9. PubMed ID: 23070941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells.
    Yao T; Chen H; Baker MB; Moroni L
    Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone.
    Correia C; Bhumiratana S; Sousa RA; Reis RL; Vunjak-Novakovic G
    Tissue Eng Part A; 2013 May; 19(9-10):1244-54. PubMed ID: 23259605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
    Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G
    Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aligned silk-based 3-D architectures for contact guidance in tissue engineering.
    Oliveira AL; Sun L; Kim HJ; Hu X; Rice W; Kluge J; Reis RL; Kaplan DL
    Acta Biomater; 2012 Apr; 8(4):1530-42. PubMed ID: 22202909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow.
    Meinel L; Karageorgiou V; Fajardo R; Snyder B; Shinde-Patil V; Zichner L; Kaplan D; Langer R; Vunjak-Novakovic G
    Ann Biomed Eng; 2004 Jan; 32(1):112-22. PubMed ID: 14964727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone tissue engineering on patterned collagen films: an in vitro study.
    Ber S; Torun Köse G; Hasirci V
    Biomaterials; 2005 May; 26(14):1977-86. PubMed ID: 15576172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
    Zhong S; He X; Li Y; Lou X
    Tissue Eng Regen Med; 2019 Apr; 16(2):141-150. PubMed ID: 30989041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds.
    Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL
    J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.
    Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z
    Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application.
    Huang X; Bai S; Lu Q; Liu X; Liu S; Zhu H
    J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1402-14. PubMed ID: 25399838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds.
    Sengupta S; Park SH; Patel A; Carn J; Lee K; Kaplan DL
    Tissue Eng Part A; 2010 Dec; 16(12):3623-34. PubMed ID: 20673134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds.
    Bhumiratana S; Grayson WL; Castaneda A; Rockwood DN; Gil ES; Kaplan DL; Vunjak-Novakovic G
    Biomaterials; 2011 Apr; 32(11):2812-20. PubMed ID: 21262535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable bead-on-spring nanofibers releasing β-carotene for bone tissue engineering.
    Esmailian S; Irani S; Bakhshi H; Zandi M
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():800-806. PubMed ID: 30184809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering.
    Sommer MR; Vetsch JR; Leemann J; Müller R; Studart AR; Hofmann S
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2074-2084. PubMed ID: 27407014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.