BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 23070975)

  • 21. End-to-end integrated fully continuous production of recombinant monoclonal antibodies.
    Godawat R; Konstantinov K; Rohani M; Warikoo V
    J Biotechnol; 2015 Nov; 213():13-9. PubMed ID: 26073998
    [No Abstract]   [Full Text] [Related]  

  • 22. Antibody capture by mixed-mode chromatography: a comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins.
    Pezzini J; Joucla G; Gantier R; Toueille M; Lomenech AM; Le Sénéchal C; Garbay B; Santarelli X; Cabanne C
    J Chromatogr A; 2011 Nov; 1218(45):8197-208. PubMed ID: 21982448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous precipitation of IgG from CHO cell culture supernatant in a tubular reactor.
    Hammerschmidt N; Hintersteiner B; Lingg N; Jungbauer A
    Biotechnol J; 2015 Aug; 10(8):1196-205. PubMed ID: 25781580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.
    Dizon-Maspat J; Bourret J; D'Agostini A; Li F
    Biotechnol Bioeng; 2012 Apr; 109(4):962-70. PubMed ID: 22094920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated continuous biomanufacturing platform with ATF perfusion and one column chromatography operation for optimum resin utilization and productivity.
    Kamga MH; Cattaneo M; Yoon S
    Prep Biochem Biotechnol; 2018 May; 48(5):383-390. PubMed ID: 29509101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new use for existing technology - continuous precipitation for purification of recombination proteins.
    Warikoo V; Godawat R
    Biotechnol J; 2015 Aug; 10(8):1101-2. PubMed ID: 25781861
    [No Abstract]   [Full Text] [Related]  

  • 27. Using partition designs to enhance purification process understanding.
    Pieracci J; Perry L; Conley L
    Biotechnol Bioeng; 2010 Dec; 107(5):814-24. PubMed ID: 20632374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous refolding of L-asparaginase inclusion bodies using periodic counter-current chromatography.
    Rajendran V; Pushpavanam S; Jayaraman G
    J Chromatogr A; 2022 Jan; 1662():462746. PubMed ID: 34936904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Online integrity monitoring in the protein A step of mAb production processes-increasing reliability and process robustness.
    Bork C; Holdridge S; Walter M; Fallon E; Pohlscheidt M
    Biotechnol Prog; 2014; 30(2):383-90. PubMed ID: 24376144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of batch and continuous multi-column protein A capture processes by optimal design.
    Baur D; Angarita M; Müller-Späth T; Steinebach F; Morbidelli M
    Biotechnol J; 2016 Jul; 11(7):920-31. PubMed ID: 26992151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining process design space for monoclonal antibody cell culture.
    Abu-Absi SF; Yang L; Thompson P; Jiang C; Kandula S; Schilling B; Shukla AA
    Biotechnol Bioeng; 2010 Aug; 106(6):894-905. PubMed ID: 20589669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Process development and optimization of continuous capture with three-column periodic counter-current chromatography.
    Shi C; Zhang QL; Jiao B; Chen XJ; Chen R; Gong W; Yao SJ; Lin DQ
    Biotechnol Bioeng; 2021 Sep; 118(9):3313-3322. PubMed ID: 33480439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Process performance and product quality in an integrated continuous antibody production process.
    Karst DJ; Steinebach F; Soos M; Morbidelli M
    Biotechnol Bioeng; 2017 Feb; 114(2):298-307. PubMed ID: 27497430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.
    Gjoka X; Gantier R; Schofield M
    J Biotechnol; 2017 Jan; 242():11-18. PubMed ID: 27939321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization.
    Smejkal B; Agrawal NJ; Helk B; Schulz H; Giffard M; Mechelke M; Ortner F; Heckmeier P; Trout BL; Hekmat D
    Biotechnol Bioeng; 2013 Sep; 110(9):2452-61. PubMed ID: 23532914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification.
    Liu Z; Mostafa SS; Shukla AA
    Biotechnol Appl Biochem; 2015; 62(1):37-47. PubMed ID: 24823474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of using continuous chromatography in downstream processing: Comparison of costs and product quality for a hybrid process vs. a conventional batch process.
    Ötes O; Flato H; Winderl J; Hubbuch J; Capito F
    J Biotechnol; 2017 Oct; 259():213-220. PubMed ID: 28684321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design.
    Goey CH; Alhuthali S; Kontoravdi C
    Biotechnol Adv; 2018; 36(4):1223-1237. PubMed ID: 29654903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of feed quality due to clarification strategy on the design and performance of protein A periodic counter-current chromatography.
    El-Sabbahy H; Ward D; Ogonah O; Deakin L; Jellum GM; Bracewell DG
    Biotechnol Prog; 2018 Nov; 34(6):1380-1392. PubMed ID: 30281957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mid-infrared spectroscopy-based antibody aggregate quantification in cell culture fluids.
    Capito F; Skudas R; Kolmar H; Hunzinger C
    Biotechnol J; 2013 Aug; 8(8):912-7. PubMed ID: 23712876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.