These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 23071004)
1. Gold nanograin microelectrodes for neuroelectronic interfaces. Kim R; Hong N; Nam Y Biotechnol J; 2013 Feb; 8(2):206-14. PubMed ID: 23071004 [TBL] [Abstract][Full Text] [Related]
2. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Kim JH; Kang G; Nam Y; Choi YK Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076 [TBL] [Abstract][Full Text] [Related]
3. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650 [TBL] [Abstract][Full Text] [Related]
4. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
5. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures. Nam Y; Chang JC; Wheeler BC; Brewer GJ IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. Kim R; Nam Y J Neural Eng; 2015 Apr; 12(2):026010. PubMed ID: 25738544 [TBL] [Abstract][Full Text] [Related]
7. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays. Kim YH; Kim GH; Kim AY; Han YH; Chung MA; Jung SD J Neural Eng; 2015 Dec; 12(6):066029. PubMed ID: 26595188 [TBL] [Abstract][Full Text] [Related]
8. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. Heim M; Yvert B; Kuhn A J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264 [TBL] [Abstract][Full Text] [Related]
9. Impedance characterization of microarray recording electrodes in vitro. Merrill DR; Tresco PA IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400 [TBL] [Abstract][Full Text] [Related]
13. A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro. Song Y; Lin N; Liu C; Jiang H; Xing G; Cai X Biosens Bioelectron; 2012; 38(1):416-20. PubMed ID: 22672764 [TBL] [Abstract][Full Text] [Related]
14. The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Seker E; Berdichevsky Y; Begley MR; Reed ML; Staley KJ; Yarmush ML Nanotechnology; 2010 Mar; 21(12):125504. PubMed ID: 20203356 [TBL] [Abstract][Full Text] [Related]
15. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry. Chang CH; Chang SR; Lin JS; Lee YT; Yeh SR; Chen H Biosens Bioelectron; 2009 Feb; 24(6):1757-64. PubMed ID: 18951013 [TBL] [Abstract][Full Text] [Related]
16. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928 [TBL] [Abstract][Full Text] [Related]
17. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation. Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617 [TBL] [Abstract][Full Text] [Related]
18. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. Hai A; Shappir J; Spira ME J Neurophysiol; 2010 Jul; 104(1):559-68. PubMed ID: 20427620 [TBL] [Abstract][Full Text] [Related]