These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 23071107)
1. Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor. Whiteley G; Collins RF; Kitmitto A J Biol Chem; 2012 Nov; 287(48):40302-16. PubMed ID: 23071107 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional interactions between the Ca Chirasani VR; Pasek DA; Meissner G J Biol Chem; 2021 Sep; 297(3):101040. PubMed ID: 34352272 [TBL] [Abstract][Full Text] [Related]
3. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166 [TBL] [Abstract][Full Text] [Related]
4. A central core disease mutation in the Ca Chirasani VR; Xu L; Addis HG; Pasek DA; Dokholyan NV; Meissner G; Yamaguchi N Am J Physiol Cell Physiol; 2019 Aug; 317(2):C358-C365. PubMed ID: 31166712 [TBL] [Abstract][Full Text] [Related]
5. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca Xu L; Mowrey DD; Chirasani VR; Wang Y; Pasek DA; Dokholyan NV; Meissner G J Biol Chem; 2018 Feb; 293(6):2015-2028. PubMed ID: 29255089 [TBL] [Abstract][Full Text] [Related]
6. Ca Xu L; Chirasani VR; Carter JS; Pasek DA; Dokholyan NV; Yamaguchi N; Meissner G J Biol Chem; 2018 Dec; 293(50):19501-19509. PubMed ID: 30341173 [TBL] [Abstract][Full Text] [Related]
7. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Cheng W; Altafaj X; Ronjat M; Coronado R Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209 [TBL] [Abstract][Full Text] [Related]
8. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor. Mei Y; Xu L; Mowrey DD; Mendez Giraldez R; Wang Y; Pasek DA; Dokholyan NV; Meissner G J Biol Chem; 2015 Jul; 290(28):17535-45. PubMed ID: 25998124 [TBL] [Abstract][Full Text] [Related]
9. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle. Ullrich ND; Fischer D; Kornblum C; Walter MC; Niggli E; Zorzato F; Treves S Hum Mutat; 2011 Mar; 32(3):309-17. PubMed ID: 21294223 [TBL] [Abstract][Full Text] [Related]
10. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle. Bannister RA; Beam KG J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526 [TBL] [Abstract][Full Text] [Related]
11. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Protasi F; Takekura H; Wang Y; Chen SR; Meissner G; Allen PD; Franzini-Armstrong C Biophys J; 2000 Nov; 79(5):2494-508. PubMed ID: 11053125 [TBL] [Abstract][Full Text] [Related]
12. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). Du GG; MacLennan DH J Biol Chem; 1999 Sep; 274(37):26120-6. PubMed ID: 10473562 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor. Hayek SM; Zhu X; Bhat MB; Zhao J; Takeshima H; Valdivia HH; Ma J Biochem J; 2000 Oct; 351(Pt 1):57-65. PubMed ID: 10998347 [TBL] [Abstract][Full Text] [Related]
14. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum. Loy RE; Orynbayev M; Xu L; Andronache Z; Apostol S; Zvaritch E; MacLennan DH; Meissner G; Melzer W; Dirksen RT J Gen Physiol; 2011 Jan; 137(1):43-57. PubMed ID: 21149547 [TBL] [Abstract][Full Text] [Related]
15. The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. Leong P; MacLennan DH J Biol Chem; 1998 Nov; 273(45):29958-64. PubMed ID: 9792715 [TBL] [Abstract][Full Text] [Related]
16. Identification of novel ryanodine receptor 1 (RyR1) protein interaction with calcium homeostasis endoplasmic reticulum protein (CHERP). Ryan T; Sharma P; Ignatchenko A; MacLennan DH; Kislinger T; Gramolini AO J Biol Chem; 2011 May; 286(19):17060-8. PubMed ID: 21454501 [TBL] [Abstract][Full Text] [Related]
17. Maurocalcine and domain A of the II-III loop of the dihydropyridine receptor Cav 1.1 subunit share common binding sites on the skeletal ryanodine receptor. Altafaj X; Cheng W; Estève E; Urbani J; Grunwald D; Sabatier JM; Coronado R; De Waard M; Ronjat M J Biol Chem; 2005 Feb; 280(6):4013-6. PubMed ID: 15591063 [TBL] [Abstract][Full Text] [Related]
18. De novo reconstitution reveals the proteins required for skeletal muscle voltage-induced Ca Perni S; Lavorato M; Beam KG Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13822-13827. PubMed ID: 29229815 [TBL] [Abstract][Full Text] [Related]
19. Apocalmodulin and Ca2+-calmodulin bind to neighboring locations on the ryanodine receptor. Samsó M; Wagenknecht T J Biol Chem; 2002 Jan; 277(2):1349-53. PubMed ID: 11694536 [TBL] [Abstract][Full Text] [Related]
20. Calmodulin-binding locations on the skeletal and cardiac ryanodine receptors. Huang X; Fruen B; Farrington DT; Wagenknecht T; Liu Z J Biol Chem; 2012 Aug; 287(36):30328-35. PubMed ID: 22773841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]