These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 23071107)
61. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. Reiken S; Lacampagne A; Zhou H; Kherani A; Lehnart SE; Ward C; Huang F; Gaburjakova M; Gaburjakova J; Rosemblit N; Warren MS; He KL; Yi GH; Wang J; Burkhoff D; Vassort G; Marks AR J Cell Biol; 2003 Mar; 160(6):919-28. PubMed ID: 12629052 [TBL] [Abstract][Full Text] [Related]
62. Apocalmodulin and Ca2+ calmodulin bind to the same region on the skeletal muscle Ca2+ release channel. Moore CP; Rodney G; Zhang JZ; Santacruz-Toloza L; Strasburg G; Hamilton SL Biochemistry; 1999 Jun; 38(26):8532-7. PubMed ID: 10387100 [TBL] [Abstract][Full Text] [Related]
63. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. Zhao F; Li P; Chen SR; Louis CF; Fruen BR J Biol Chem; 2001 Apr; 276(17):13810-6. PubMed ID: 11278295 [TBL] [Abstract][Full Text] [Related]
64. Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. Dulhunty AF; Haarmann CS; Green D; Laver DR; Board PG; Casarotto MG Prog Biophys Mol Biol; 2002; 79(1-3):45-75. PubMed ID: 12225776 [TBL] [Abstract][Full Text] [Related]
65. Suramin interacts with the calmodulin binding site on the ryanodine receptor, RYR1. Papineni RV; O'Connell KM; Zhang H; Dirksen RT; Hamilton SL J Biol Chem; 2002 Dec; 277(51):49167-74. PubMed ID: 12364321 [TBL] [Abstract][Full Text] [Related]
66. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Kimura T; Nakamori M; Lueck JD; Pouliquin P; Aoike F; Fujimura H; Dirksen RT; Takahashi MP; Dulhunty AF; Sakoda S Hum Mol Genet; 2005 Aug; 14(15):2189-200. PubMed ID: 15972723 [TBL] [Abstract][Full Text] [Related]
67. Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. Tae H; Casarotto MG; Dulhunty AF Eur Biophys J; 2009 Dec; 39(1):51-9. PubMed ID: 19399493 [TBL] [Abstract][Full Text] [Related]
68. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin. Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146 [TBL] [Abstract][Full Text] [Related]
69. Mutations to Gly2370, Gly2373 or Gly2375 in malignant hyperthermia domain 2 decrease caffeine and cresol sensitivity of the rabbit skeletal-muscle Ca2+-release channel (ryanodine receptor isoform 1). Du GG; Oyamada H; Khanna VK; MacLennan DH Biochem J; 2001 Nov; 360(Pt 1):97-105. PubMed ID: 11695996 [TBL] [Abstract][Full Text] [Related]
70. Superresolution imaging--caveolae, caveolins, mitochondria, and function in heart. Lederer WJ Biophys J; 2013 Jun; 104(11):2323. PubMed ID: 23746501 [No Abstract] [Full Text] [Related]
71. Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes. Ward CW; Protasi F; Castillo D; Wang Y; Chen SR; Pessah IN; Allen PD; Schneider MF Biophys J; 2001 Dec; 81(6):3216-30. PubMed ID: 11720987 [TBL] [Abstract][Full Text] [Related]
72. Structural determinants of skeletal muscle ryanodine receptor gating. Ramachandran S; Chakraborty A; Xu L; Mei Y; Samsó M; Dokholyan NV; Meissner G J Biol Chem; 2013 Mar; 288(9):6154-65. PubMed ID: 23319589 [TBL] [Abstract][Full Text] [Related]
73. Structural and functional characterization of ryanodine receptor-natrin toxin interaction. Zhou Q; Wang QL; Meng X; Shu Y; Jiang T; Wagenknecht T; Yin CC; Sui SF; Liu Z Biophys J; 2008 Nov; 95(9):4289-99. PubMed ID: 18658224 [TBL] [Abstract][Full Text] [Related]
74. TRPC3-interacting triadic proteins in skeletal muscle. Woo JS; Kim DH; Allen PD; Lee EH Biochem J; 2008 Apr; 411(2):399-405. PubMed ID: 18215135 [TBL] [Abstract][Full Text] [Related]
75. Phosphofructokinase muscle-specific isoform requires caveolin-3 expression for plasma membrane recruitment and caveolar targeting: implications for the pathogenesis of caveolin-related muscle diseases. Sotgia F; Bonuccelli G; Minetti C; Woodman SE; Capozza F; Kemp RG; Scherer PE; Lisanti MP Am J Pathol; 2003 Dec; 163(6):2619-34. PubMed ID: 14633633 [TBL] [Abstract][Full Text] [Related]
76. Identification of a region of RyR1 that participates in allosteric coupling with the alpha(1S) (Ca(V)1.1) II-III loop. Proenza C; O'Brien J; Nakai J; Mukherjee S; Allen PD; Beam KG J Biol Chem; 2002 Feb; 277(8):6530-5. PubMed ID: 11726651 [TBL] [Abstract][Full Text] [Related]
77. Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of t-tubules near junctions. Wong J; Baddeley D; Bushong EA; Yu Z; Ellisman MH; Hoshijima M; Soeller C Biophys J; 2013 Jun; 104(11):L22-4. PubMed ID: 23746531 [TBL] [Abstract][Full Text] [Related]
78. FK-binding protein is associated with the ryanodine receptor of skeletal muscle in vertebrate animals. Qi Y; Ogunbunmi EM; Freund EA; Timerman AP; Fleischer S J Biol Chem; 1998 Dec; 273(52):34813-9. PubMed ID: 9857007 [TBL] [Abstract][Full Text] [Related]
79. Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors. Wium E; Dulhunty AF; Beard NA Pflugers Arch; 2016 Nov; 468(11-12):1985-1994. PubMed ID: 27595738 [TBL] [Abstract][Full Text] [Related]