These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 2307138)

  • 1. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.
    Horno J; González-Caballero F; González-Fernández CF
    Eur Biophys J; 1990; 17(6):307-13. PubMed ID: 2307138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ionic polarizability on electrodiffusion in lipid bilayer membranes.
    Bradshaw RW; Robertson CR
    J Membr Biol; 1975 Dec; 25(1-2):93-114. PubMed ID: 1214289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential.
    Kim H; Jeong N; Yang S; Choi J; Lee MS; Nam JY; Jwa E; Kim B; Ryu KS; Choi YW
    Water Res; 2019 Nov; 165():114970. PubMed ID: 31426007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes.
    Morf WE; Pretsch E; De Rooij NF
    J Electroanal Chem (Lausanne); 2010 Mar; 642(1-2):45-56. PubMed ID: 23255874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate theory models for ion transport through rigid pores. III. Continuum vs discrete models in single file diffusion.
    Stephan W; Kleutsch B; Frehland E
    J Theor Biol; 1983 Nov; 105(2):287-310. PubMed ID: 6317988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of concentration polarization in electrokinetic processes by network thermodynamic methods.
    Horno J; González-Fernández CF; Hayas A; González-Caballero F
    Biophys J; 1989 Mar; 55(3):527-35. PubMed ID: 2930833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stabilized finite volume element method for solving Poisson-Nernst-Planck equations.
    Li J; Ying J
    Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3543. PubMed ID: 34716987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion layer caused by local ionic transmembrane fluxes.
    Marhl M; Brumen M; Glaser R; Heinrich R
    Pflugers Arch; 1996; 431(6 Suppl 2):R259-60. PubMed ID: 8739363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodiffusion kinetics of ionic transport in a simple membrane channel.
    Valent I; Petrovič P; Neogrády P; Schreiber I; Marek M
    J Phys Chem B; 2013 Nov; 117(46):14283-93. PubMed ID: 24164274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
    Chen D; Lear J; Eisenberg B
    Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical properties of Onsager's dipole chain model for ionic transport across membranes. I. Steady-state fluxes and instabilities.
    Schnakenberg J
    Biophys J; 1973 Feb; 13(2):143-66. PubMed ID: 4702013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.
    Park HM; Lee JS; Kim TW
    J Colloid Interface Sci; 2007 Nov; 315(2):731-9. PubMed ID: 17681522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.
    Chaudhry JH; Comer J; Aksimentiev A; Olson LN
    Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of space charge on the ionic currents through biological membranes.
    Ruppersberg JP; Rüdel R
    J Theor Biol; 1988 Feb; 130(4):431-45. PubMed ID: 2460705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.
    Levitt DG
    Biophys J; 1978 May; 22(2):209-19. PubMed ID: 656542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations.
    Chao Z; Xie D
    J Comput Chem; 2021 Oct; 42(27):1929-1943. PubMed ID: 34382702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.