These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome. Kim S; Kim H; Kralik JD; Jeong J PLoS Comput Biol; 2016 Aug; 12(8):e1005084. PubMed ID: 27540747 [TBL] [Abstract][Full Text] [Related]
4. A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain. Hahn K; Massopust PR; Prigarin S BMC Bioinformatics; 2016 Feb; 17():87. PubMed ID: 26873589 [TBL] [Abstract][Full Text] [Related]
5. From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency. Kim JS; Kaiser M Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180307 [TBL] [Abstract][Full Text] [Related]
6. The role of symmetry in neural networks and their Laplacian spectra. de Lange SC; van den Heuvel MP; de Reus MA Neuroimage; 2016 Nov; 141():357-365. PubMed ID: 27475289 [TBL] [Abstract][Full Text] [Related]
7. The Laplacian spectrum of neural networks. de Lange SC; de Reus MA; van den Heuvel MP Front Comput Neurosci; 2014 Jan; 7():189. PubMed ID: 24454286 [TBL] [Abstract][Full Text] [Related]
8. Automatic discovery of cell types and microcircuitry from neural connectomics. Jonas E; Kording K Elife; 2015 Apr; 4():e04250. PubMed ID: 25928186 [TBL] [Abstract][Full Text] [Related]
9. Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans. Morone F; Makse HA Nat Commun; 2019 Oct; 10(1):4961. PubMed ID: 31672985 [TBL] [Abstract][Full Text] [Related]
10. A weighted network analysis framework for the hourglass effect-And its application in the C. elegans connectome. Batta I; Yao Q; Sabrin KM; Dovrolis C PLoS One; 2021; 16(10):e0249846. PubMed ID: 34705821 [TBL] [Abstract][Full Text] [Related]
11. Rich-cores in networks. Ma A; Mondragón RJ PLoS One; 2015; 10(3):e0119678. PubMed ID: 25799585 [TBL] [Abstract][Full Text] [Related]
12. The Worm Connectome: Back to the Future. Schafer WR Trends Neurosci; 2018 Nov; 41(11):763-765. PubMed ID: 30366562 [TBL] [Abstract][Full Text] [Related]
15. The Intrinsic Similarity of Topological Structure in Biological Neural Networks. Zhao H; Shao C; Shi Z; He S; Gong Z IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3292-3305. PubMed ID: 37224366 [TBL] [Abstract][Full Text] [Related]
16. Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome. Chen M; Feng D; Su H; Su T; Wang M Sci Rep; 2022 Feb; 12(1):3043. PubMed ID: 35197494 [TBL] [Abstract][Full Text] [Related]
17. Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome. Avila B; Serafino M; Augusto P; Zimmer M; Makse HA PLoS One; 2024; 19(4):e0297669. PubMed ID: 38598455 [TBL] [Abstract][Full Text] [Related]
18. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome. Pavlovic DM; Vértes PE; Bullmore ET; Schafer WR; Nichols TE PLoS One; 2014; 9(7):e97584. PubMed ID: 24988196 [TBL] [Abstract][Full Text] [Related]
19. Graph theoretical model of a sensorimotor connectome in zebrafish. Stobb M; Peterson JM; Mazzag B; Gahtan E PLoS One; 2012; 7(5):e37292. PubMed ID: 22624008 [TBL] [Abstract][Full Text] [Related]
20. The connectome of a decision-making neural network. Jarrell TA; Wang Y; Bloniarz AE; Brittin CA; Xu M; Thomson JN; Albertson DG; Hall DH; Emmons SW Science; 2012 Jul; 337(6093):437-44. PubMed ID: 22837521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]