These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23071501)
21. Alzheimer's Disease Diagnosis Based on Cortical and Subcortical Features. Gupta Y; Lee KH; Choi KY; Lee JJ; Kim BC; Kwon GR J Healthc Eng; 2019; 2019():2492719. PubMed ID: 30944718 [TBL] [Abstract][Full Text] [Related]
22. Volumetric Histogram-Based Alzheimer's Disease Detection Using Support Vector Machine. Elshatoury H; Avots E; Anbarjafari G; J Alzheimers Dis; 2019; 72(2):515-524. PubMed ID: 31609690 [TBL] [Abstract][Full Text] [Related]
23. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia. Tohka J; Moradi E; Huttunen H; Neuroinformatics; 2016 Jul; 14(3):279-96. PubMed ID: 26803769 [TBL] [Abstract][Full Text] [Related]
24. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Chu C; Hsu AL; Chou KH; Bandettini P; Lin C; Neuroimage; 2012 Mar; 60(1):59-70. PubMed ID: 22166797 [TBL] [Abstract][Full Text] [Related]
25. Utilizing temporal information in fMRI decoding: classifier using kernel regression methods. Chu C; Mourão-Miranda J; Chiu YC; Kriegeskorte N; Tan G; Ashburner J Neuroimage; 2011 Sep; 58(2):560-71. PubMed ID: 21729756 [TBL] [Abstract][Full Text] [Related]
26. Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI. Challis E; Hurley P; Serra L; Bozzali M; Oliver S; Cercignani M Neuroimage; 2015 May; 112():232-243. PubMed ID: 25731993 [TBL] [Abstract][Full Text] [Related]
27. Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. Ramírez J; Górriz JM; Ortiz A; Martínez-Murcia FJ; Segovia F; Salas-Gonzalez D; Castillo-Barnes D; Illán IA; Puntonet CG; J Neurosci Methods; 2018 May; 302():47-57. PubMed ID: 29242123 [TBL] [Abstract][Full Text] [Related]
28. Ensemble based on static classifier selection for automated diagnosis of Mild Cognitive Impairment. Nanni L; Lumini A; Zaffonato N J Neurosci Methods; 2018 May; 302():42-46. PubMed ID: 29104000 [TBL] [Abstract][Full Text] [Related]
29. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. Sørensen L; Nielsen M; J Neurosci Methods; 2018 May; 302():66-74. PubMed ID: 29378218 [TBL] [Abstract][Full Text] [Related]
30. Accuracy of MRI Classification Algorithms in a Tertiary Memory Center Clinical Routine Cohort. Morin A; Samper-Gonzalez J; Bertrand A; Ströer S; Dormont D; Mendes A; Coupé P; Ahdidan J; Lévy M; Samri D; Hampel H; Dubois B; Teichmann M; Epelbaum S; Colliot O J Alzheimers Dis; 2020; 74(4):1157-1166. PubMed ID: 32144978 [TBL] [Abstract][Full Text] [Related]
31. Binary classification of ¹⁸F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Vandenberghe R; Nelissen N; Salmon E; Ivanoiu A; Hasselbalch S; Andersen A; Korner A; Minthon L; Brooks DJ; Van Laere K; Dupont P Neuroimage; 2013 Jan; 64():517-25. PubMed ID: 22982358 [TBL] [Abstract][Full Text] [Related]
32. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related]
33. Defining multivariate normative rules for healthy aging using neuroimaging and machine learning: an application to Alzheimer's disease. Andrade de Oliveira A; Carthery-Goulart MT; Oliveira Júnior PP; Carrettiero DC; Sato JR J Alzheimers Dis; 2015; 43(1):201-12. PubMed ID: 25079801 [TBL] [Abstract][Full Text] [Related]
34. Random walks on B distributed resting-state functional connectivity to identify Alzheimer's disease and Mild Cognitive Impairment. Rahimiasl M; Moghadam Charkari N; Ghaderi F; Clin Neurophysiol; 2021 Oct; 132(10):2540-2550. PubMed ID: 34455312 [TBL] [Abstract][Full Text] [Related]
35. View-centralized multi-atlas classification for Alzheimer's disease diagnosis. Liu M; Zhang D; Shen D; Hum Brain Mapp; 2015 May; 36(5):1847-65. PubMed ID: 25624081 [TBL] [Abstract][Full Text] [Related]
36. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
37. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease. Beheshti I; Demirel H; Comput Biol Med; 2015 Sep; 64():208-16. PubMed ID: 26226415 [TBL] [Abstract][Full Text] [Related]
38. Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures. Cao P; Liu X; Yang J; Zhao D; Huang M; Zhang J; Zaiane O Comput Biol Med; 2017 Dec; 91():21-37. PubMed ID: 29031664 [TBL] [Abstract][Full Text] [Related]
39. Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns. Farzan A; Mashohor S; Ramli AR; Mahmud R Behav Brain Res; 2015 Sep; 290():124-30. PubMed ID: 25889456 [TBL] [Abstract][Full Text] [Related]
40. Effect of finite sample size on feature selection and classification: a simulation study. Way TW; Sahiner B; Hadjiiski LM; Chan HP Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]