These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23071512)

  • 41. A Method for Delineation of Bone Surfaces in Photoacoustic Computed Tomography of the Finger.
    Biswas SK; van Es P; Steenbergen W; Manohar S
    Ultrason Imaging; 2016 Jan; 38(1):63-76. PubMed ID: 26048066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative Photoacoustic Tomography Using Iteratively Refined Wavefield Reconstruction Inversion: A Simulation Study.
    Ranjbaran SM; Aghamiry HS; Gholami A; Operto S; Avanaki K
    IEEE Trans Med Imaging; 2024 Feb; 43(2):874-885. PubMed ID: 37847617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An image reconstruction method for endoscopic photoacoustic tomography in tissues with heterogeneous sound speed.
    Zheng S; Yixuan J
    Comput Biol Med; 2019 Jul; 110():15-28. PubMed ID: 31103813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the Importance of Low-Frequency Signals in Functional and Molecular Photoacoustic Computed Tomography.
    Vu T; Klippel P; Canning AJ; Ma C; Zhang H; Kasatkina LA; Tang Y; Xia J; Verkhusha VV; Vo-Dinh T; Jing Y; Yao J
    IEEE Trans Med Imaging; 2024 Feb; 43(2):771-783. PubMed ID: 37773898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Image-guided filtering for improving photoacoustic tomographic image reconstruction.
    Awasthi N; Kalva SK; Pramanik M; Yalavarthy PK
    J Biomed Opt; 2018 Jun; 23(9):1-22. PubMed ID: 29943527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography.
    Wang K; Su R; Oraevsky AA; Anastasio MA
    Phys Med Biol; 2012 Sep; 57(17):5399-423. PubMed ID: 22864062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography.
    Queirós D; Déan-Ben XL; Buehler A; Razansky D; Rosenthal A; Ntziachristos V
    J Biomed Opt; 2013 Jul; 18(7):076014. PubMed ID: 23864012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An adaptive filtered back-projection for photoacoustic image reconstruction.
    Huang H; Bustamante G; Peterson R; Ye JY
    Med Phys; 2015 May; 42(5):2169-78. PubMed ID: 25979011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution.
    Luo S; Shen T; Sun Y; Li J; Li G; Tang X
    Phys Med Biol; 2018 Mar; 63(7):075006. PubMed ID: 29509149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal.
    Zheng S; Duoduo H; Yuan Y
    Comput Biol Med; 2016 Sep; 76():60-8. PubMed ID: 27403571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maximum Entropy Based Non-Negative Optoacoustic Tomographic Image Reconstruction.
    Prakash J; Mandal S; Razansky D; Ntziachristos V
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2604-2616. PubMed ID: 30640596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array.
    Xia J; Huang C; Maslov K; Anastasio MA; Wang LV
    Opt Lett; 2013 Aug; 38(16):3140-3. PubMed ID: 24104670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of small variations of speed of sound in optoacoustic tomographic imaging.
    Deán-Ben XL; Ntziachristos V; Razansky D
    Med Phys; 2014 Jul; 41(7):073301. PubMed ID: 24989414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CT number variations due to different image acquisition and reconstruction parameters: a thorax phantom study.
    Groell R; Rienmueller R; Schaffler GJ; Portugaller HR; Graif E; Willfurth P
    Comput Med Imaging Graph; 2000; 24(2):53-8. PubMed ID: 10767584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Impulse Response of Negatively Focused Spherical Ultrasound Detectors and Its Effect on Tomographic Optoacoustic Reconstruction.
    Drozdov G; Levi A; Rosenthal A
    IEEE Trans Med Imaging; 2019 Oct; 38(10):2326-2337. PubMed ID: 30735988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction.
    Paltauf G; Nuster R
    J Biomed Opt; 2014 Feb; 19(2):026014. PubMed ID: 24566958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Segmentation-free empirical beam hardening correction for CT.
    Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ℓ0 Gradient Minimization Based Image Reconstruction for Limited-Angle Computed Tomography.
    Yu W; Zeng L
    PLoS One; 2015; 10(7):e0130793. PubMed ID: 26158543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multidomain computational modeling of photoacoustic imaging: verification, validation, and image quality prediction.
    Akhlaghi N; Pfefer TJ; Wear KA; Garra BS; Vogt WC
    J Biomed Opt; 2019 Nov; 24(12):1-12. PubMed ID: 31705636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient low-dose CT artifact mitigation using an artifact-matched prior scan.
    Xu W; Mueller K
    Med Phys; 2012 Aug; 39(8):4748-60. PubMed ID: 22894400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.