These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23071584)

  • 1. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?
    Grigoryan AV; Wang H; Cardozo TJ
    PLoS One; 2012; 7(10):e46532. PubMed ID: 23071584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening.
    Wei D; Zheng H; Su N; Deng M; Lai L
    J Chem Inf Model; 2010 Oct; 50(10):1855-64. PubMed ID: 20968314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening.
    Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM
    J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening.
    Hsieh JH; Yin S; Wang XS; Liu S; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2012 Jan; 52(1):16-28. PubMed ID: 22017385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recipes for the selection of experimental protein conformations for virtual screening.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete molecular dynamics distinguishes nativelike binding poses from decoys in difficult targets.
    Proctor EA; Yin S; Tropsha A; Dokholyan NV
    Biophys J; 2012 Jan; 102(1):144-51. PubMed ID: 22225808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRDOCK: an ultrafast multipurpose protein-ligand docking tool.
    Cortés Cabrera Á; Klett J; Dos Santos HG; Perona A; Gil-Redondo R; Francis SM; Priego EM; Gago F; Morreale A
    J Chem Inf Model; 2012 Aug; 52(8):2300-9. PubMed ID: 22764680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures.
    Guterres H; Park SJ; Jiang W; Im W
    J Chem Inf Model; 2021 Jan; 61(1):535-546. PubMed ID: 33337877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.
    Mysinger MM; Carchia M; Irwin JJ; Shoichet BK
    J Med Chem; 2012 Jul; 55(14):6582-94. PubMed ID: 22716043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft docking and multiple receptor conformations in virtual screening.
    Ferrari AM; Wei BQ; Costantino L; Shoichet BK
    J Med Chem; 2004 Oct; 47(21):5076-84. PubMed ID: 15456251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.
    Kumar A; Zhang KY
    J Chem Inf Model; 2016 Jun; 56(6):965-73. PubMed ID: 26247231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.