BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23071598)

  • 1. L-ornithine derived polyamines in cystic fibrosis airways.
    Grasemann H; Shehnaz D; Enomoto M; Leadley M; Belik J; Ratjen F
    PLoS One; 2012; 7(10):e46618. PubMed ID: 23071598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased ornithine-derived polyamines cause airway hyperresponsiveness in a mouse model of asthma.
    North ML; Grasemann H; Khanna N; Inman MD; Gauvreau GM; Scott JA
    Am J Respir Cell Mol Biol; 2013 Jun; 48(6):694-702. PubMed ID: 23470627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased arginase activity in cystic fibrosis airways.
    Grasemann H; Schwiertz R; Matthiesen S; Racké K; Ratjen F
    Am J Respir Crit Care Med; 2005 Dec; 172(12):1523-8. PubMed ID: 16166623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis.
    Grasemann H; Al-Saleh S; Scott JA; Shehnaz D; Mehl A; Amin R; Rafii M; Pencharz P; Belik J; Ratjen F
    Am J Respir Crit Care Med; 2011 May; 183(10):1363-8. PubMed ID: 21278301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine homeostasis in arginase knockout mice.
    Deignan JL; Livesay JC; Shantz LM; Pegg AE; O'Brien WE; Iyer RK; Cederbaum SD; Grody WW
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1296-301. PubMed ID: 17686999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice.
    Mhanna MJ; Ferkol T; Martin RJ; Dreshaj IA; van Heeckeren AM; Kelley TJ; Haxhiu MA
    Am J Respir Cell Mol Biol; 2001 May; 24(5):621-6. PubMed ID: 11350833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric dimethylarginine in chronic obstructive pulmonary disease (ADMA in COPD).
    Scott JA; Duongh M; Young AW; Subbarao P; Gauvreau GM; Grasemann H
    Int J Mol Sci; 2014 Apr; 15(4):6062-71. PubMed ID: 24727374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms.
    Buga GM; Wei LH; Bauer PM; Fukuto JM; Ignarro LJ
    Am J Physiol; 1998 Oct; 275(4):R1256-64. PubMed ID: 9756558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamine synthesis from proline in the developing porcine placenta.
    Wu G; Bazer FW; Hu J; Johnson GA; Spencer TE
    Biol Reprod; 2005 Apr; 72(4):842-50. PubMed ID: 15576824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A randomized controlled trial of inhaled L-arginine in patients with cystic fibrosis.
    Grasemann H; Tullis E; Ratjen F
    J Cyst Fibros; 2013 Sep; 12(5):468-74. PubMed ID: 23333044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginase and pulmonary diseases.
    Maarsingh H; Pera T; Meurs H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Aug; 378(2):171-84. PubMed ID: 18437360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung arginase expression and activity is increased in cystic fibrosis mouse models.
    Jaecklin T; Duerr J; Huang H; Rafii M; Bear CE; Ratjen F; Pencharz P; Kavanagh BP; Mall MA; Grasemann H
    J Appl Physiol (1985); 2014 Aug; 117(3):284-8. PubMed ID: 24925982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental changes in polyamine levels and synthesis in the ovine conceptus.
    Kwon H; Wu G; Bazer FW; Spencer TE
    Biol Reprod; 2003 Nov; 69(5):1626-34. PubMed ID: 12855596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth.
    Pegg AE; Lockwood DH; Williams-Ashman HG
    Biochem J; 1970 Mar; 117(1):17-31. PubMed ID: 5420953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAT-2 amplifies the agonist-evoked force of airway smooth muscle by enhancing spermine-mediated phosphatidylinositol-(4)-phosphate-5-kinase-gamma activity.
    Chen H; Macleod C; Deng B; Mason L; Kasaian M; Goldman S; Wolf S; Williams C; Bowman MR
    Am J Physiol Lung Cell Mol Physiol; 2007 Oct; 293(4):L883-91. PubMed ID: 17644755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamine metabolism.
    Seiler N
    Digestion; 1990; 46 Suppl 2():319-30. PubMed ID: 2262065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloperoxidase-dependent oxidative metabolism of nitric oxide in the cystic fibrosis airway.
    Chapman AL; Morrissey BM; Vasu VT; Juarez MM; Houghton JS; Li CS; Cross CE; Eiserich JP
    J Cyst Fibros; 2010 Mar; 9(2):84-92. PubMed ID: 20080069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity.
    Chang CI; Liao JC; Kuo L
    Cancer Res; 2001 Feb; 61(3):1100-6. PubMed ID: 11221839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine metabolism in Acanthamoeba: polyamine content and synthesis of ornithine, putrescine, and diaminopropane.
    Kim BG; Sobota A; Bitonti AJ; McCann PP; Byers TJ
    J Protozool; 1987 Aug; 34(3):278-84. PubMed ID: 3656216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ORKAMBI-Mediated Rescue of Mucociliary Clearance in Cystic Fibrosis Primary Respiratory Cultures Is Enhanced by Arginine Uptake, Arginase Inhibition, and Promotion of Nitric Oxide Signaling to the Cystic Fibrosis Transmembrane Conductance Regulator Channel.
    Wu YS; Jiang J; Ahmadi S; Lew A; Laselva O; Xia S; Bartlett C; Ip W; Wellhauser L; Ouyang H; Gonska T; Moraes TJ; Bear CE
    Mol Pharmacol; 2019 Oct; 96(4):515-525. PubMed ID: 31427400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.