BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23071730)

  • 1. Development of bioluminescent bioreporters for in vitro and in vivo tracking of Yersinia pestis.
    Sun Y; Connor MG; Pennington JM; Lawrenz MB
    PLoS One; 2012; 7(10):e47123. PubMed ID: 23071730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.
    Nham T; Filali S; Danne C; Derbise A; Carniel E
    PLoS One; 2012; 7(4):e34714. PubMed ID: 22496846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague.
    Sha J; Rosenzweig JA; Kirtley ML; van Lier CJ; Fitts EC; Kozlova EV; Erova TE; Tiner BL; Chopra AK
    Microb Pathog; 2013 Feb; 55():39-50. PubMed ID: 23063826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Monitoring of Yersinia pestis Promoter Activity by Bioluminescence Imaging.
    Derbise A; Dussurget O; Carniel E; Pizarro-CerdĂĄ J
    Methods Mol Biol; 2019; 2010():85-97. PubMed ID: 31177433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescent tracing of a Yersinia pestis pCD1
    Zhou Y; Zhou J; Ji Y; Li L; Tan Y; Tian G; Yang R; Wang X
    Microbes Infect; 2018 Mar; 20(3):166-175. PubMed ID: 29180033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescent tracking of colonization and clearance dynamics of plasmid-deficient Yersinia pestis strains in a mouse model of septicemic plague.
    Zhou J; Bi Y; Xu X; Qiu Y; Wang Q; Feng N; Cui Y; Yan Y; Zhou L; Tan Y; Yang H; Du Z; Han Y; Song Y; Zhang P; Zhou D; Cheng Y; Zhou Y; Yang R; Wang X
    Microbes Infect; 2014 Mar; 16(3):214-24. PubMed ID: 24333143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice.
    Gonzalez RJ; Weening EH; Frothingham R; Sempowski GD; Miller VL
    BMC Microbiol; 2012 Jul; 12():147. PubMed ID: 22827851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Assays to Monitor Survival and Growth of Yersinia pestis Within Macrophages.
    Pulsifer AR; VanCleave TT; Lawrenz MB
    Methods Mol Biol; 2019; 2010():181-196. PubMed ID: 31177439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague.
    Eichelberger KR; SepĂșlveda VE; Ford J; Selitsky SR; Mieczkowski PA; Parker JS; Goldman WE
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.
    Bland DM; Eisele NA; Keleher LL; Anderson PE; Anderson DM
    PLoS One; 2011 Mar; 6(3):e17352. PubMed ID: 21399698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of a new intimin/invasin-like protein in Yersinia pestis virulence.
    Seo KS; Kim JW; Park JY; Viall AK; Minnich SS; Rohde HN; Schnider DR; Lim SY; Hong JB; Hinnebusch BJ; O'Loughlin JL; Deobald CF; Bohach GA; Hovde CJ; Minnich SA
    Infect Immun; 2012 Oct; 80(10):3559-69. PubMed ID: 22851752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague.
    Sha J; Agar SL; Baze WB; Olano JP; Fadl AA; Erova TE; Wang S; Foltz SM; Suarez G; Motin VL; Chauhan S; Klimpel GR; Peterson JW; Chopra AK
    Infect Immun; 2008 Apr; 76(4):1390-409. PubMed ID: 18227160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Bioluminescent' reporter phage for the detection of Category A bacterial pathogens.
    Schofield DA; Molineux IJ; Westwater C
    J Vis Exp; 2011 Jul; (53):e2740. PubMed ID: 21775956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells.
    Kerschen EJ; Cohen DA; Kaplan AM; Straley SC
    Infect Immun; 2004 Aug; 72(8):4589-602. PubMed ID: 15271919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis.
    Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P
    Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage.
    Schofield DA; Molineux IJ; Westwater C
    J Microbiol Methods; 2012 Aug; 90(2):80-2. PubMed ID: 22579583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis.
    Perry RD; Craig SK; Abney J; Bobrov AG; Kirillina O; Mier I; Truszczynska H; Fetherston JD
    Microbiology (Reading); 2012 Mar; 158(Pt 3):804-815. PubMed ID: 22222497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague.
    Ritzert JT; Lathem WW
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathionylation of
    Mitchell A; Tam C; Elli D; Charlton T; Osei-Owusu P; Fazlollahi F; Faull KF; Schneewind O
    mBio; 2017 May; 8(3):. PubMed ID: 28512097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of Braun lipoprotein gene (lpp) and curing of plasmid pPCP1 dramatically alter the virulence of Yersinia pestis CO92 in a mouse model of pneumonic plague.
    Agar SL; Sha J; Baze WB; Erova TE; Foltz SM; Suarez G; Wang S; Chopra AK
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3247-3259. PubMed ID: 19589835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.