BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23072325)

  • 1. Testing a vapour-phase model of stomatal responses to humidity.
    Mott KA; Peak D
    Plant Cell Environ; 2013 May; 36(5):936-44. PubMed ID: 23072325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new, vapour-phase mechanism for stomatal responses to humidity and temperature.
    Peak D; Mott KA
    Plant Cell Environ; 2011 Jan; 34(1):162-78. PubMed ID: 20880202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves.
    Mott KA
    Plant Cell Environ; 2007 Nov; 30(11):1444-9. PubMed ID: 17897414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal responses to humidity in isolated epidermes.
    Shope JC; Peak D; Mott KA
    Plant Cell Environ; 2008 Sep; 31(9):1290-8. PubMed ID: 18541007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal heterogeneity in responses to humidity and temperature: Testing a mechanistic model.
    Sweet KJ; Peak D; Mott KA
    Plant Cell Environ; 2017 Nov; 40(11):2771-2779. PubMed ID: 28777880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of transpiration by radiation.
    Pieruschka R; Huber G; Berry JA
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13372-7. PubMed ID: 20624981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal responses to humidity and temperature in darkness.
    Mott KA; Peak D
    Plant Cell Environ; 2010 Jul; 33(7):1084-90. PubMed ID: 20199627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.
    Takayama K; King D; Robinson SA; Osmond B
    Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of stomatal density response to atmospheric CO2.
    Konrad W; Roth-Nebelsick A; Grein M
    J Theor Biol; 2008 Aug; 253(4):638-58. PubMed ID: 18538792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the mesophyll on stomatal responses in amphistomatous leaves.
    Mott KA; Peak D
    Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations.
    Eamus D; Taylor DT; Macinnis-Ng CM; Shanahan S; De Silva L
    Plant Cell Environ; 2008 Mar; 31(3):269-77. PubMed ID: 18088329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism.
    Kaiser H; Kappen L
    J Exp Bot; 2001 Jun; 52(359):1303-13. PubMed ID: 11432949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opinion: stomatal responses to light and CO(2) depend on the mesophyll.
    Mott KA
    Plant Cell Environ; 2009 Nov; 32(11):1479-86. PubMed ID: 19627565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicted versus measured photosynthetic water-use efficiency of crop stands under dynamically changing field environments.
    Xu LK; Hsiao TC
    J Exp Bot; 2004 Nov; 55(407):2395-411. PubMed ID: 15448179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Sites of Evaporation within Leaves.
    Buckley TN; John GP; Scoffoni C; Sack L
    Plant Physiol; 2017 Mar; 173(3):1763-1782. PubMed ID: 28153921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?
    Bunce JA
    Plant Cell Environ; 2006 Aug; 29(8):1644-50. PubMed ID: 16898024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of variable [CO2] and temperature on water transport structure-function relationships in Eucalyptus.
    Phillips NG; Attard RD; Ghannoum O; Lewis JD; Logan BA; Tissue DT
    Tree Physiol; 2011 Sep; 31(9):945-52. PubMed ID: 21712237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.