These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 23072343)
1. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability. Qian D; Lei C; Hao GP; Li WC; Lu AH ACS Appl Mater Interfaces; 2012 Nov; 4(11):6125-32. PubMed ID: 23072343 [TBL] [Abstract][Full Text] [Related]
2. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Hao GP; Li WC; Qian D; Wang GH; Zhang WP; Zhang T; Wang AQ; Schüth F; Bongard HJ; Lu AH J Am Chem Soc; 2011 Jul; 133(29):11378-88. PubMed ID: 21692510 [TBL] [Abstract][Full Text] [Related]
3. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity. Qian D; Lei C; Wang EM; Li WC; Lu AH ChemSusChem; 2014 Jan; 7(1):291-8. PubMed ID: 24124090 [TBL] [Abstract][Full Text] [Related]
4. Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Liu Y; Ghimire P; Jaroniec M J Colloid Interface Sci; 2019 Feb; 535():122-132. PubMed ID: 30292103 [TBL] [Abstract][Full Text] [Related]
5. Kinetic separation of carbon dioxide and methane on a copper metal-organic framework. Bao Z; Alnemrat S; Yu L; Vasiliev I; Ren Q; Lu X; Deng S J Colloid Interface Sci; 2011 May; 357(2):504-9. PubMed ID: 21392776 [TBL] [Abstract][Full Text] [Related]
6. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. Zhang Z; Wang K; Atkinson JD; Yan X; Li X; Rood MJ; Yan Z J Hazard Mater; 2012 Aug; 229-230():183-91. PubMed ID: 22717067 [TBL] [Abstract][Full Text] [Related]
7. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Choi S; Drese JH; Jones CW ChemSusChem; 2009; 2(9):796-854. PubMed ID: 19731282 [TBL] [Abstract][Full Text] [Related]
8. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance. Wang R; Wang P; Yan X; Lang J; Peng C; Xue Q ACS Appl Mater Interfaces; 2012 Nov; 4(11):5800-6. PubMed ID: 23098209 [TBL] [Abstract][Full Text] [Related]
9. A method for screening the potential of MOFs as CO2 adsorbents in pressure swing adsorption processes. Pirngruber GD; Hamon L; Bourrelly S; Llewellyn PL; Lenoir E; Guillerm V; Serre C; Devic T ChemSusChem; 2012 Apr; 5(4):762-76. PubMed ID: 22438338 [TBL] [Abstract][Full Text] [Related]
10. Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. Decoste JB; Peterson GW; Smith MW; Stone CA; Willis CR J Am Chem Soc; 2012 Jan; 134(3):1486-9. PubMed ID: 22239201 [TBL] [Abstract][Full Text] [Related]
11. A bio-metal-organic framework for highly selective CO(2) capture: A molecular simulation study. Chen Y; Jiang J ChemSusChem; 2010 Aug; 3(8):982-8. PubMed ID: 20623727 [TBL] [Abstract][Full Text] [Related]
12. An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal-Organic Frameworks CPO-27-M. Pato-Doldán B; Rosnes MH; Dietzel PDC ChemSusChem; 2017 Apr; 10(8):1710-1719. PubMed ID: 28052597 [TBL] [Abstract][Full Text] [Related]
13. In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration. Hwang CC; Jin Z; Lu W; Sun Z; Alemany LB; Lomeda JR; Tour JM ACS Appl Mater Interfaces; 2011 Dec; 3(12):4782-6. PubMed ID: 22091700 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Britt D; Furukawa H; Wang B; Glover TG; Yaghi OM Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20637-40. PubMed ID: 19948967 [TBL] [Abstract][Full Text] [Related]
15. Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin. Zhang Y; Nsabimana A; Zhu L; Bo X; Han C; Li M; Guo L Talanta; 2014 Nov; 129():55-62. PubMed ID: 25127564 [TBL] [Abstract][Full Text] [Related]
16. Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer. Culp JT; Sui L; Goodman A; Luebke D J Colloid Interface Sci; 2013 Mar; 393():278-85. PubMed ID: 23168045 [TBL] [Abstract][Full Text] [Related]
17. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC. Karra JR; Walton KS Langmuir; 2008 Aug; 24(16):8620-6. PubMed ID: 18630977 [TBL] [Abstract][Full Text] [Related]
18. Yeast-based microporous carbon materials for carbon dioxide capture. Shen W; He Y; Zhang S; Li J; Fan W ChemSusChem; 2012 Jul; 5(7):1274-9. PubMed ID: 22696279 [TBL] [Abstract][Full Text] [Related]
19. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? Keskin S; van Heest TM; Sholl DS ChemSusChem; 2010 Aug; 3(8):879-91. PubMed ID: 20730980 [TBL] [Abstract][Full Text] [Related]
20. Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5. Sabouni R; Kazemian H; Rohani S Environ Sci Technol; 2013 Aug; 47(16):9372-80. PubMed ID: 23889136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]