These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 23072369)
1. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment. Egusa H; Kobayashi M; Matsumoto T; Sasaki J; Uraguchi S; Yatani H Tissue Eng Part A; 2013 Mar; 19(5-6):770-82. PubMed ID: 23072369 [TBL] [Abstract][Full Text] [Related]
2. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Bayati V; Sadeghi Y; Shokrgozar MA; Haghighipour N; Azadmanesh K; Amanzadeh A; Azari S Tissue Cell; 2011 Dec; 43(6):359-66. PubMed ID: 21872289 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Stern-Straeter J; Bonaterra GA; Juritz S; Birk R; Goessler UR; Bieback K; Bugert P; Schultz J; Hörmann K; Kinscherf R; Faber A Int J Mol Med; 2014 Jan; 33(1):160-70. PubMed ID: 24220225 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Haghighipour N; Heidarian S; Shokrgozar MA; Amirizadeh N Cell Biol Int; 2012 Jul; 36(7):669-75. PubMed ID: 22681392 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
6. Comparing the effect of uniaxial cyclic mechanical stimulation and chemical factors on myogenin and Myh2 expression in mouse embryonic and bone marrow derived mesenchymal stem cells. Tannaz NA; Ali SM; Nooshin H; Nasser A; Reza M; Amir A; Maryam J Mol Cell Biomech; 2014 Mar; 11(1):19-37. PubMed ID: 25330622 [TBL] [Abstract][Full Text] [Related]
7. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471 [TBL] [Abstract][Full Text] [Related]
8. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes. Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110 [TBL] [Abstract][Full Text] [Related]
9. BMP4 inhibits myogenic differentiation of bone marrow-derived mesenchymal stromal cells in mdx mice. Jiqing C; Yaqin L; Yingyin L; Fei C; Huili Z; Yuling Z; Juan Y; Shanwei F; Cheng Z Cytotherapy; 2015 Sep; 17(9):1213-9. PubMed ID: 26276004 [TBL] [Abstract][Full Text] [Related]
10. Isolation and enrichment of skeletal muscle progenitor cells from mouse bone marrow. Bhagavati S; Xu W Biochem Biophys Res Commun; 2004 May; 318(1):119-24. PubMed ID: 15110761 [TBL] [Abstract][Full Text] [Related]
11. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo. Ma X; Zhang S; Zhou J; Chen B; Shang Y; Gao T; Wang X; Xie H; Chen F J Tissue Eng Regen Med; 2012 Aug; 6(8):598-613. PubMed ID: 22396316 [TBL] [Abstract][Full Text] [Related]
12. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Coletti D; Teodori L; Albertini MC; Rocchi M; Pristerà A; Fini M; Molinaro M; Adamo S Cytometry A; 2007 Oct; 71(10):846-56. PubMed ID: 17694560 [TBL] [Abstract][Full Text] [Related]
13. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Heher P; Maleiner B; Prüller J; Teuschl AH; Kollmitzer J; Monforte X; Wolbank S; Redl H; Rünzler D; Fuchs C Acta Biomater; 2015 Sep; 24():251-65. PubMed ID: 26141153 [TBL] [Abstract][Full Text] [Related]
14. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. Stern-Straeter J; Bonaterra GA; Kassner SS; Zügel S; Hörmann K; Kinscherf R; Goessler UR J Tissue Eng Regen Med; 2011 Aug; 5(8):e197-206. PubMed ID: 21370490 [TBL] [Abstract][Full Text] [Related]
15. A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation. Yu T; Chua CK; Tay CY; Wen F; Yu H; Chan JK; Chong MS; Leong DT; Tan LP Macromol Biosci; 2013 Jun; 13(6):799-807. PubMed ID: 23606448 [TBL] [Abstract][Full Text] [Related]
16. Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation. Lee JH; Kosinski PA; Kemp DM Exp Cell Res; 2005 Jul; 307(1):174-82. PubMed ID: 15922737 [TBL] [Abstract][Full Text] [Related]
17. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Zheng Z; Leng Y; Zhou C; Ma Z; Zhong Z; Shi XM; Zhang W Biochem Biophys Res Commun; 2012 Nov; 428(2):309-14. PubMed ID: 23085232 [TBL] [Abstract][Full Text] [Related]
18. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Ishikawa T; Akatsuka A Stem Cells; 2007 Sep; 25(9):2283-90. PubMed ID: 17588936 [TBL] [Abstract][Full Text] [Related]
19. MiR-124 inhibits myogenic differentiation of mesenchymal stem cells via targeting Dlx5. Qadir AS; Woo KM; Ryoo HM; Yi T; Song SU; Baek JH J Cell Biochem; 2014 Sep; 115(9):1572-81. PubMed ID: 24733577 [TBL] [Abstract][Full Text] [Related]