BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23072384)

  • 1. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli.
    Kim BG; Kim HJ; Ahn JH
    J Agric Food Chem; 2012 Nov; 60(44):11143-8. PubMed ID: 23072384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases.
    Kim HJ; Kim BG; Ahn JH
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5275-82. PubMed ID: 23549747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana.
    Jones P; Messner B; Nakajima J; Schäffner AR; Saito K
    J Biol Chem; 2003 Nov; 278(45):43910-8. PubMed ID: 12900416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise Synthesis of Quercetin Bisglycosides Using Engineered
    Choi GS; Kim HJ; Kim EJ; Lee SJ; Lee Y; Ahn JH
    J Microbiol Biotechnol; 2018 Nov; 28(11):1859-1864. PubMed ID: 30270602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of two quercetin O-diglycosides in Escherichia coli.
    An DG; Yang SM; Kim BG; Ahn JH
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):841-9. PubMed ID: 26931782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2.
    Kim BG; Sung SH; Ahn JH
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2447-53. PubMed ID: 22159735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of a Flavonol 3-O-rhamnosyltransferase and two UDP-rhamnose synthases from Hypericum monogynum.
    Zhang S; Wang Y; Cui Z; Li Q; Kong L; Luo J
    Plant Physiol Biochem; 2023 Apr; 197():107643. PubMed ID: 36989989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin.
    Thuan NH; Malla S; Trung NT; Dhakal D; Pokhrel AR; Chu LL; Sohng JK
    World J Microbiol Biotechnol; 2017 Feb; 33(2):36. PubMed ID: 28120309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis thaliana β-glucosidase BGLU15 attacks flavonol 3-O-β-glucoside-7-O-α-rhamnosides.
    Roepke J; Bozzo GG
    Phytochemistry; 2015 Jan; 109():14-24. PubMed ID: 25468534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic sugar cassettes for the efficient production of flavonol glycosides in Escherichia coli.
    Parajuli P; Pandey RP; Trang NT; Chaudhary AK; Sohng JK
    Microb Cell Fact; 2015 Jun; 14():76. PubMed ID: 26051114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis.
    Roepke J; Gordon HOW; Neil KJA; Gidda S; Mullen RT; Freixas Coutin JA; Bray-Stone D; Bozzo GG
    Plant Cell Physiol; 2017 Jun; 58(6):1030-1047. PubMed ID: 28419331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of 3-O-xylosyl quercetin in Escherichia coli.
    Pandey RP; Malla S; Simkhada D; Kim BG; Sohng JK
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1889-901. PubMed ID: 23053089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanded acceptor substrates flexibility study of flavonol 7-O-rhamnosyltransferase, AtUGT89C1 from Arabidopsis thaliana.
    Parajuli P; Pandey RP; Trang NTH; Oh TJ; Sohng JK
    Carbohydr Res; 2015 Dec; 418():13-19. PubMed ID: 26513760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.
    Ruprecht C; Bönisch F; Ilmberger N; Heyer TV; Haupt ETK; Streit WR; Rabausch U
    Metab Eng; 2019 Sep; 55():212-219. PubMed ID: 31323310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli.
    Yang SM; Han SH; Kim BG; Ahn JH
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1311-8. PubMed ID: 24879482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli.
    Yoon JA; Kim BG; Lee WJ; Lim Y; Chong Y; Ahn JH
    Appl Environ Microbiol; 2012 Jun; 78(12):4256-62. PubMed ID: 22492444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides.
    De Bruyn F; Van Brempt M; Maertens J; Van Bellegem W; Duchi D; De Mey M
    Microb Cell Fact; 2015 Sep; 14():138. PubMed ID: 26377568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose.
    Thapa SB; Pandey RP; Bashyal P; Yamaguchi T; Sohng JK
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):7953-7969. PubMed ID: 31407037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of regio-specific production of myricetin-3-O-α-L-rhamnoside in engineered Escherichia coli.
    Thuan NH; Pandey RP; Thuy TT; Park JW; Sohng JK
    Appl Biochem Biotechnol; 2013 Dec; 171(8):1956-67. PubMed ID: 24013882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds.
    Yin Q; Shen G; Chang Z; Tang Y; Gao H; Pang Y
    J Exp Bot; 2017 Jan; 68(3):597-612. PubMed ID: 28204516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.