These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain. Bravim F; Lippman SI; da Silva LF; Souza DT; Fernandes AA; Masuda CA; Broach JR; Fernandes PM Appl Microbiol Biotechnol; 2013 Mar; 97(5):2093-107. PubMed ID: 22915193 [TBL] [Abstract][Full Text] [Related]
3. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress. Bravim F; Mota MM; Fernandes AA; Fernandes PM FEMS Yeast Res; 2016 Aug; 16(5):. PubMed ID: 27388472 [TBL] [Abstract][Full Text] [Related]
4. How does yeast respond to pressure? Fernandes PM Braz J Med Biol Res; 2005 Aug; 38(8):1239-45. PubMed ID: 16082465 [TBL] [Abstract][Full Text] [Related]
5. Differences in gene modulation in Saccharomyces cerevisiae indicate that maturity plays an important role in the high hydrostatic pressure stress response and resistance. Spagnol BAA; Antunes TFS; Quadros OF; Fernandes AAR; Fernandes PMB Fungal Biol; 2020 May; 124(5):440-446. PubMed ID: 32389306 [TBL] [Abstract][Full Text] [Related]
6. Induction of baroresistance by hydrogen peroxide, ethanol and cold-shock in Saccharomyces cerevisiae. Palhano FL; Orlando MT; Fernandes PM FEMS Microbiol Lett; 2004 Apr; 233(1):139-45. PubMed ID: 15043880 [TBL] [Abstract][Full Text] [Related]
7. High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae. Domitrovic T; Fernandes CM; Boy-Marcotte E; Kurtenbach E FEBS Lett; 2006 Nov; 580(26):6033-8. PubMed ID: 17055490 [TBL] [Abstract][Full Text] [Related]
8. Pressure response in the yeast Saccharomyces cerevisiae: from cellular to molecular approaches. Palhano FL; Gomes HL; Orlando MT; Kurtenbach E; Fernandes PM Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):447-57. PubMed ID: 15529754 [TBL] [Abstract][Full Text] [Related]
9. Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress. de Freitas JM; Bravim F; Buss DS; Lemos EM; Fernandes AA; Fernandes PM FEMS Yeast Res; 2012 Dec; 12(8):871-8. PubMed ID: 22846157 [TBL] [Abstract][Full Text] [Related]
10. Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. Iwahashi H; Odani M; Ishidou E; Kitagawa E FEBS Lett; 2005 May; 579(13):2847-52. PubMed ID: 15876434 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. Auesukaree C; Damnernsawad A; Kruatrachue M; Pokethitiyook P; Boonchird C; Kaneko Y; Harashima S J Appl Genet; 2009; 50(3):301-10. PubMed ID: 19638689 [TBL] [Abstract][Full Text] [Related]
12. High hydrostatic pressure and the cell membrane: stress response of Saccharomyces cerevisiae. Bravim F; de Freitas JM; Fernandes AA; Fernandes PM Ann N Y Acad Sci; 2010 Feb; 1189():127-32. PubMed ID: 20233378 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Adaptability of the Deep-Sea Bacterium Shewanella piezotolerans WP3 to High Pressure and Low Temperature by Experimental Evolution under H Xie Z; Jian H; Jin Z; Xiao X Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29269502 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Takagi H Biosci Biotechnol Biochem; 2021 Apr; 85(5):1017-1037. PubMed ID: 33836532 [TBL] [Abstract][Full Text] [Related]
15. Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology. Abe F; Horikoshi K Extremophiles; 1998 Aug; 2(3):223-8. PubMed ID: 9783169 [TBL] [Abstract][Full Text] [Related]
16. Difference between the cell wall roughnesses of mothers and daughters of Saccharomyces cerevisiae subjected to high pressure stress. Moura RD; Carvalho LM; Spagnol BAA; Carneiro T; Tosi Costa AC; Quadros OF; Ventura JA; de Biasi RS; Fernandes AAR; Fernandes PMB Micron; 2021 Aug; 147():103091. PubMed ID: 34090132 [TBL] [Abstract][Full Text] [Related]
17. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. Fernandes PM; Domitrovic T; Kao CM; Kurtenbach E FEBS Lett; 2004 Jan; 556(1-3):153-60. PubMed ID: 14706843 [TBL] [Abstract][Full Text] [Related]
18. Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae. Iwahashi H; Shimizu H; Odani M; Komatsu Y Extremophiles; 2003 Aug; 7(4):291-8. PubMed ID: 12910389 [TBL] [Abstract][Full Text] [Related]
19. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866 [TBL] [Abstract][Full Text] [Related]
20. A transcriptome resource for the deep-sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress. Jian H; Li S; Tang X; Xiao X Mar Genomics; 2016 Dec; 30():87-91. PubMed ID: 27720170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]