These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23072503)

  • 1. Enzyme-assisted aqueous extraction of lipid from microalgae.
    Liang K; Zhang Q; Cong W
    J Agric Food Chem; 2012 Nov; 60(47):11771-6. PubMed ID: 23072503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method.
    Araujo GS; Matos LJ; Fernandes JO; Cartaxo SJ; Gonçalves LR; Fernandes FA; Farias WR
    Ultrason Sonochem; 2013 Jan; 20(1):95-8. PubMed ID: 22938999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris.
    Park JY; Nam B; Choi SA; Oh YK; Lee JS
    Bioresour Technol; 2014 Aug; 166():620-4. PubMed ID: 24929300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.
    Ellison CR; Overa S; Boldor D
    Ultrason Sonochem; 2019 Mar; 51():496-503. PubMed ID: 29793838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids.
    Biller P; Riley R; Ross AB
    Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of continuous lipid extraction from Chlorella vulgaris by CO₂-expanded methanol for biodiesel production.
    Yang YH; Klinthong W; Tan CS
    Bioresour Technol; 2015 Dec; 198():550-6. PubMed ID: 26433151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris.
    Soštarič M; Klinar D; Bricelj M; Golob J; Berovič M; Likozar B
    N Biotechnol; 2012 Feb; 29(3):325-31. PubMed ID: 22178401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on effective cell disruption methods for lipid extraction from microalgae.
    Prabakaran P; Ravindran AD
    Lett Appl Microbiol; 2011 Aug; 53(2):150-4. PubMed ID: 21575021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid extraction from microalgae cell using persulfate-based oxidation.
    Seo YH; Sung M; Oh YK; Han JI
    Bioresour Technol; 2016 Jan; 200():1073-5. PubMed ID: 26614226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction.
    Flisar K; Meglic SH; Morelj J; Golob J; Miklavcic D
    Bioelectrochemistry; 2014 Dec; 100():44-51. PubMed ID: 24713586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes.
    Misra R; Guldhe A; Singh P; Rawat I; Stenström TA; Bux F
    Bioresour Technol; 2015 Jan; 176():1-7. PubMed ID: 25460977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiesel from mixed culture algae via a wet lipid extraction procedure.
    Sathish A; Sims RC
    Bioresour Technol; 2012 Aug; 118():643-7. PubMed ID: 22721684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid extraction from wet Nannochloropsis biomass via enzyme-assisted three phase partitioning.
    Qiu C; He Y; Huang Z; Li S; Huang J; Wang M; Chen B
    Bioresour Technol; 2019 Jul; 284():381-390. PubMed ID: 30959375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.
    Jung S; Maurer D; Johnson LA
    Bioresour Technol; 2009 Nov; 100(21):5340-7. PubMed ID: 19570674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.