BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23072514)

  • 1. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate.
    Patel H; Nemeria NS; Brammer LA; Freel Meyers CL; Jordan F
    J Am Chem Soc; 2012 Nov; 134(44):18374-9. PubMed ID: 23072514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative decarboxylation of pyruvate by 1-deoxy-d-xyulose 5-phosphate synthase, a central metabolic enzyme in bacteria.
    DeColli AA; Nemeria NS; Majumdar A; Gerfen GJ; Jordan F; Freel Meyers CL
    J Biol Chem; 2018 Jul; 293(28):10857-10869. PubMed ID: 29784878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining critical residues for substrate binding to 1-deoxy-D-xylulose 5-phosphate synthase--active site substitutions stabilize the predecarboxylation intermediate C2α-lactylthiamin diphosphate.
    Basta LAB; Patel H; Kakalis L; Jordan F; Meyers CLF
    FEBS J; 2014 Jun; 281(12):2820-2837. PubMed ID: 24767541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray crystallography-based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate.
    Chen PY; DeColli AA; Freel Meyers CL; Drennan CL
    J Biol Chem; 2019 Aug; 294(33):12405-12414. PubMed ID: 31239351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of an Active Site Network Leads to Activation of C2α-Lactylthiamin Diphosphate on the Antibacterial Target 1-Deoxy-d-xylulose-5-phosphate Synthase.
    Toci EM; Austin SL; Majumdar A; Woodcock HL; Freel Meyers CL
    Biochemistry; 2024 Mar; 63(5):671-687. PubMed ID: 38393327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction.
    Johnston ML; Bonett EM; DeColli AA; Freel Meyers CL
    Biochemistry; 2022 Sep; 61(17):1810-1823. PubMed ID: 35998648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Site Histidines Link Conformational Dynamics with Catalysis on Anti-Infective Target 1-Deoxy-d-xylulose 5-Phosphate Synthase.
    DeColli AA; Zhang X; Heflin KL; Jordan F; Freel Meyers CL
    Biochemistry; 2019 Dec; 58(49):4970-4982. PubMed ID: 31724401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS.
    Zhou J; Yang L; DeColli A; Freel Meyers C; Nemeria NS; Jordan F
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):9355-9360. PubMed ID: 28808005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Understanding the Chemistry and Biology of 1-Deoxy-d-xylulose 5-Phosphate (DXP) Synthase: A Unique Antimicrobial Target at the Heart of Bacterial Metabolism.
    Bartee D; Freel Meyers CL
    Acc Chem Res; 2018 Oct; 51(10):2546-2555. PubMed ID: 30203647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and Hallmarks of Establishing Alkylacetylphosphonates as Probes of Bacterial 1-Deoxy-d-xylulose 5-Phosphate Synthase.
    Sanders S; Vierling RJ; Bartee D; DeColli AA; Harrison MJ; Aklinski JL; Koppisch AT; Freel Meyers CL
    ACS Infect Dis; 2017 Jul; 3(7):467-478. PubMed ID: 28636325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodobacter capsulatus 1-deoxy-D-xylulose 5-phosphate synthase: steady-state kinetics and substrate binding.
    Eubanks LM; Poulter CD
    Biochemistry; 2003 Feb; 42(4):1140-9. PubMed ID: 12549936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the Unique Mechanism of Bacterial 1-Deoxy-d-xylulose-5-phosphate Synthase.
    Bartee D; Freel Meyers CL
    Biochemistry; 2018 Jul; 57(29):4349-4356. PubMed ID: 29944345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and time course of formation of major thiamin diphosphate-bound covalent intermediates derived from a chromophoric substrate analogue on benzoylformate decarboxylase.
    Chakraborty S; Nemeria NS; Balakrishnan A; Brandt GS; Kneen MM; Yep A; McLeish MJ; Kenyon GL; Petsko GA; Ringe D; Jordan F
    Biochemistry; 2009 Feb; 48(5):981-94. PubMed ID: 19140682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate .
    Meyer D; Neumann P; Parthier C; Friedemann R; Nemeria N; Jordan F; Tittmann K
    Biochemistry; 2010 Sep; 49(37):8197-212. PubMed ID: 20715795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C2-alpha-lactylthiamin diphosphate is an intermediate on the pathway of thiamin diphosphate-dependent pyruvate decarboxylation. Evidence on enzymes and models.
    Zhang S; Liu M; Yan Y; Zhang Z; Jordan F
    J Biol Chem; 2004 Dec; 279(52):54312-8. PubMed ID: 15501823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations.
    Jordan F; Nemeria NS
    Bioorg Chem; 2014 Dec; 57():251-262. PubMed ID: 25228115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DXP synthase-catalyzed C-N bond formation: nitroso substrate specificity studies guide selective inhibitor design.
    Morris F; Vierling R; Boucher L; Bosch J; Freel Meyers CL
    Chembiochem; 2013 Jul; 14(11):1309-15. PubMed ID: 23824585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate.
    Nemeria N; Binshtein E; Patel H; Balakrishnan A; Vered I; Shaanan B; Barak Z; Chipman D; Jordan F
    Biochemistry; 2012 Oct; 51(40):7940-52. PubMed ID: 22970650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4'-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase.
    Balakrishnan A; Gao Y; Moorjani P; Nemeria NS; Tittmann K; Jordan F
    J Am Chem Soc; 2012 Feb; 134(8):3873-85. PubMed ID: 22300533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.