These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23072514)

  • 21. Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate.
    Nemeria N; Binshtein E; Patel H; Balakrishnan A; Vered I; Shaanan B; Barak Z; Chipman D; Jordan F
    Biochemistry; 2012 Oct; 51(40):7940-52. PubMed ID: 22970650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4'-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase.
    Balakrishnan A; Gao Y; Moorjani P; Nemeria NS; Tittmann K; Jordan F
    J Am Chem Soc; 2012 Feb; 134(8):3873-85. PubMed ID: 22300533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin.
    Nemeria NS; Shome B; DeColli AA; Heflin K; Begley TP; Meyers CF; Jordan F
    Biochemistry; 2016 Feb; 55(7):1135-48. PubMed ID: 26813608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme.
    Nemeria N; Baykal A; Joseph E; Zhang S; Yan Y; Furey W; Jordan F
    Biochemistry; 2004 Jun; 43(21):6565-75. PubMed ID: 15157089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol.
    Sprenger GA; Schörken U; Wiegert T; Grolle S; de Graaf AA; Taylor SV; Begley TP; Bringer-Meyer S; Sahm H
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12857-62. PubMed ID: 9371765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography.
    Wille G; Meyer D; Steinmetz A; Hinze E; Golbik R; Tittmann K
    Nat Chem Biol; 2006 Jun; 2(6):324-8. PubMed ID: 16680160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New function of the amino group of thiamine diphosphate in thiamine catalysis.
    Meshalkina LE; Kochetov GA; Hübner G; Tittmann K; Golbik R
    Biochemistry (Mosc); 2009 Mar; 74(3):293-300. PubMed ID: 19364324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting DXP synthase in human pathogens: enzyme inhibition and antimicrobial activity of butylacetylphosphonate.
    Smith JM; Warrington NV; Vierling RJ; Kuhn ML; Anderson WF; Koppisch AT; Freel Meyers CL
    J Antibiot (Tokyo); 2014 Jan; 67(1):77-83. PubMed ID: 24169798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of pre-steady-state rate constants on the Escherichia coli pyruvate dehydrogenase complex reveals that loop movement controls the rate-limiting step.
    Balakrishnan A; Nemeria NS; Chakraborty S; Kakalis L; Jordan F
    J Am Chem Soc; 2012 Nov; 134(45):18644-55. PubMed ID: 23088422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I.
    Belenky I; Steinmetz A; Vyazmensky M; Barak Z; Tittmann K; Chipman DM
    FEBS J; 2012 Jun; 279(11):1967-79. PubMed ID: 22443469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies.
    Patel H; Nemeria NS; Andrews FH; McLeish MJ; Jordan F
    Biochemistry; 2014 Apr; 53(13):2145-52. PubMed ID: 24628377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic binding insights for 1-deoxy-D-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax.
    Battistini MR; Shoji C; Handa S; Breydo L; Merkler DJ
    Protein Expr Purif; 2016 Apr; 120():16-27. PubMed ID: 26699947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase.
    Bar-Ilan A; Balan V; Tittmann K; Golbik R; Vyazmensky M; Hübner G; Barak Z; Chipman DM
    Biochemistry; 2001 Oct; 40(39):11946-54. PubMed ID: 11570896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.
    Arjunan P; Sax M; Brunskill A; Chandrasekhar K; Nemeria N; Zhang S; Jordan F; Furey W
    J Biol Chem; 2006 Jun; 281(22):15296-303. PubMed ID: 16531404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase.
    Balakrishnan A; Jordan F; Nathan CF
    J Biol Chem; 2013 Jul; 288(30):21688-702. PubMed ID: 23760263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.
    Banerjee A; Preiser AL; Sharkey TD
    PLoS One; 2016; 11(8):e0161534. PubMed ID: 27548482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxybenzaldoximes Are D-GAP-Competitive Inhibitors of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase.
    Bartee D; Morris F; Al-Khouja A; Freel Meyers CL
    Chembiochem; 2015 Aug; 16(12):1771-81. PubMed ID: 26174207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The herbicide ketoclomazone inhibits 1-deoxy-D-xylulose 5-phosphate synthase in the 2-C-methyl-D-erythritol 4-phosphate pathway and shows antibacterial activity against Haemophilus influenzae.
    Matsue Y; Mizuno H; Tomita T; Asami T; Nishiyama M; Kuzuyama T
    J Antibiot (Tokyo); 2010 Oct; 63(10):583-8. PubMed ID: 20808315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.