These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23072614)

  • 41. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement.
    Li K; Wang D; Yi S; Jia H; Qian J; Du Z; Ren T; Liang J; Martinez-Chapa SO; Madou M
    Rev Sci Instrum; 2019 Nov; 90(11):115001. PubMed ID: 31779448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production and application of glycan microarrays.
    Busch J; McBride R; Head SR
    Methods Mol Biol; 2010; 632():269-82. PubMed ID: 20217584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of high-resolution micro/nano dot array by electrohydrodynamic jet printing with enhanced uniformity.
    Jin Y; Zhao Z; Chen J; Chen W; Wang G; Yin Z
    Sci Rep; 2024 Mar; 14(1):6932. PubMed ID: 38521866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micro/nanoscale patterning of nanostructured metal substrates for plasmonic applications.
    Shankar SS; Rizzello L; Cingolani R; Rinaldi R; Pompa PP
    ACS Nano; 2009 Apr; 3(4):893-900. PubMed ID: 19320441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An ultra-sensitive nanoarray chip based on single-molecule sandwich immunoassay and TIRFM for protein detection in biologic fluids.
    Lee S; Cho NP; Kim JD; Jung H; Kang SH
    Analyst; 2009 May; 134(5):933-8. PubMed ID: 19381387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation and Printing of Microdroplets Using Straight Electrode-Based Electrohydrodynamic Jet for Flexible Substrate.
    Wang D; Abbas Z; Lu L; Liu C; Zhang J; Pu C; Li Y; Yin P; Zhang X; Liang J
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296080
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of Impingement Types and Printing Quality during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Corr DT; Huang Y
    Langmuir; 2016 Mar; 32(12):3004-14. PubMed ID: 26934283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance and penetration of laccase and ABTS inks on various printing substrates.
    Matilainen K; Hämäläinen T; Savolainen A; Sipiläinen-Malm T; Peltonen J; Erho T; Smolander M
    Colloids Surf B Biointerfaces; 2012 Feb; 90():119-28. PubMed ID: 22051108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing.
    Zhou P; Yu H; Zou W; Zhong Y; Wang X; Wang Z; Liu L
    Opt Express; 2020 Mar; 28(5):6336-6349. PubMed ID: 32225884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ejection of cell laden RPMI-1640 culture medium by Electrohydrodynamic method.
    Haiyi Z; Can W; Ruiwen J; Fei W; Yiwei W; Zhihai W; Xi C; Xiaolin W; Jingang G
    Biomed Microdevices; 2019 Jul; 21(3):64. PubMed ID: 31273462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulation of Cone-Jet and Micro-Drip Regimes and Printing of Micro-Scale Patterns on PET Substrate.
    Wang D; Abbas Z; Lu L; Liang S; Zhao X; Xu P; Zhao K; Suo L; Cui Y; Yin P; Tang B; Xie J; Yang Y; Liang J
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
    Guo L; Duan Y; Huang Y; Yin Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silica colloidal crystals for enhanced fluorescence detection in microarrays.
    Zheng S; Zhang H; Ross E; Le TV; Wirth MJ
    Anal Chem; 2007 May; 79(10):3867-72. PubMed ID: 17419588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of substrate wettability in nanoparticle transfer from wrinkled elastomers: fundamentals and application toward hierarchical patterning.
    Hanske C; Müller MB; Bieber V; Tebbe M; Jessl S; Wittemann A; Fery A
    Langmuir; 2012 Dec; 28(49):16745-50. PubMed ID: 23167604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein nanoarrays for high-resolution patterning of bacteria on gold surfaces.
    Costello C; Kreft JU; Thomas CM; Mendes PM
    Methods Mol Biol; 2011; 790():191-200. PubMed ID: 21948416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality.
    Iversen L; Cherouati N; Berthing T; Stamou D; Martinez KL
    Langmuir; 2008 Jun; 24(12):6375-81. PubMed ID: 18484753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robust and versatile ionic liquid microarrays achieved by microcontact printing.
    Gunawan CA; Ge M; Zhao C
    Nat Commun; 2014 Apr; 5():3744. PubMed ID: 24781644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.