BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23072661)

  • 1. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds.
    Hugall JT; Baumberg JJ
    Nano Lett; 2015 Apr; 15(4):2600-4. PubMed ID: 25734469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Fano resonance in symmetric multilayered gold nanoshells.
    Peña-Rodríguez O; Rivera A; Campoy-Quiles M; Pal U
    Nanoscale; 2013 Jan; 5(1):209-16. PubMed ID: 23151994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral tuning of the phosphorescence from metalloporphyrins attached to gold nanorods.
    Djiango M; Ritter K; Müller R; Klar TA
    Opt Express; 2012 Aug; 20(17):19374-81. PubMed ID: 23038580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling.
    Dai D; Dong Z; Fan J
    Nanotechnology; 2013 Jan; 24(2):025201. PubMed ID: 23238520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles.
    Smitha SL; Nissamudeen KM; Philip D; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):186-90. PubMed ID: 18222106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions.
    Fischer S; Hallermann F; Eichelkraut T; von Plessen G; Krämer KW; Biner D; Steinkemper H; Hermle M; Goldschmidt JC
    Opt Express; 2012 Jan; 20(1):271-82. PubMed ID: 22274350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free biosensing based on single gold nanostars as plasmonic transducers.
    Dondapati SK; Sau TK; Hrelescu C; Klar TA; Stefani FD; Feldmann J
    ACS Nano; 2010 Nov; 4(11):6318-22. PubMed ID: 20942444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.
    Xiao M; Chen H; Ming T; Shao L; Wang J
    ACS Nano; 2010 Nov; 4(11):6565-72. PubMed ID: 20939510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL; Lin VK; Marty R; Large N; Llado EA; Arbouet A; Girard C; Aizpurua J; Tripathy S; Mlayah A
    Opt Express; 2010 Oct; 18(21):22271-82. PubMed ID: 20941128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures.
    Hsueh CH; Lin CH; Li JH; Hatab NA; Gu B
    Opt Express; 2011 Sep; 19(20):19660-7. PubMed ID: 21996907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.