These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23072828)

  • 1. Discovery of low mucus adhesion surfaces.
    Gu M; Yildiz H; Carrier R; Belfort G
    Acta Biomater; 2013 Feb; 9(2):5201-7. PubMed ID: 23072828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial synthesis with high throughput discovery of protein-resistant membrane surfaces.
    Gu M; Vegas AJ; Anderson DG; Langer RS; Kilduff JE; Belfort G
    Biomaterials; 2013 Aug; 34(26):6133-8. PubMed ID: 23706542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput atmospheric pressure plasma-induced graft polymerization for identifying protein-resistant surfaces.
    Gu M; Kilduff JE; Belfort G
    Biomaterials; 2012 Feb; 33(5):1261-70. PubMed ID: 22123600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries.
    Imbrogno J; Williams MD; Belfort G
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2385-92. PubMed ID: 25569191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity.
    Nie N; Tu Q; Wang JC; Chao F; Liu R; Zhang Y; Liu W; Wang J
    Colloids Surf B Biointerfaces; 2012 Sep; 97():226-35. PubMed ID: 22609608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of hierarchical comb hydrophilic polymer brush (HCHPB) surfaces inspired by fish mucus for anti-biofouling.
    Su X; Hao D; Li Z; Guo X; Jiang L
    J Mater Chem B; 2019 Feb; 7(8):1322-1332. PubMed ID: 32255171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Zwitterionic and Ionic Monomers with Graphene Surfaces.
    Perumal S; Raji A; Cheong IW
    Langmuir; 2018 Jun; 34(23):6737-6747. PubMed ID: 29791160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled radical polymerization of hydrophilic and zwitterionic brush-like polymers from silk fibroin surfaces.
    Heichel DL; Vy NCH; Ward SP; Adamson DH; Burke KA
    J Mater Chem B; 2020 Dec; 8(45):10392-10406. PubMed ID: 33112356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic forces and hydrogen bonds in the adhesion between retinoid-coated surfaces.
    Tareste D; Pincet F; Lebeau L; Perez E
    Langmuir; 2007 Mar; 23(6):3225-9. PubMed ID: 17266339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface wettability on the adhesion of proteins.
    Sethuraman A; Han M; Kane RS; Belfort G
    Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, photo-polymerization, hydrolytic stability, and etching behavior of new self-etch adhesive monomers.
    Afra S; Atai M; Yeganeh H; Ziaee F
    J Mech Behav Biomed Mater; 2023 Mar; 139():105693. PubMed ID: 36731189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The method of surface PEGylation influences leukocyte adhesion and activation.
    Ademovic Z; Holst B; Kahn RA; Jørring I; Brevig T; Wei J; Hou X; Winter-Jensen B; Kingshott P
    J Mater Sci Mater Med; 2006 Mar; 17(3):203-11. PubMed ID: 16555112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of corneal epithelial cell-ocular mucus-tear film interactions: some surface-chemical pathways of corneal defense.
    Sharma A
    Biophys Chem; 1993 Jul; 47(1):87-99. PubMed ID: 8364150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.
    Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL
    Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems.
    Serra L; Doménech J; Peppas NA
    Eur J Pharm Biopharm; 2006 May; 63(1):11-8. PubMed ID: 16368228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of protein and cell attachment on materials generated from N-(2-hydroxypropyl) acrylamide.
    Fairbanks BD; Thissen H; Maurdev G; Pasic P; White JF; Meagher L
    Biomacromolecules; 2014 Sep; 15(9):3259-66. PubMed ID: 25126835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.
    Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A
    Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of poly(cyclooctene)-g-poly(ethylene glycol) (PCOE-g-PEG) graft copolymers with tunable PEG side chains via ROMP and its protein adsorption and platelet adhesion properties.
    Yang Y; Shi D; Wang X; Shi H; Jiang T; Yang Y; Luan S; Yin J; Li RK
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():539-45. PubMed ID: 25491862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.