These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23073005)

  • 1. Identification of positive selection in disease response genes within members of the Poaceae.
    Rech GE; Vargas WA; Sukno SA; Thon MR
    Plant Signal Behav; 2012 Dec; 7(12):1667-75. PubMed ID: 23073005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection.
    Voitsik AM; Muench S; Deising HB; Voll LM
    BMC Plant Biol; 2013 May; 13():85. PubMed ID: 23718541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative evolutionary histories of chitinase genes in the Genus zea and Family poaceae.
    Tiffin P
    Genetics; 2004 Jul; 167(3):1331-40. PubMed ID: 15280246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex.
    Ramakrishna W; Emberton J; SanMiguel P; Ogden M; Llaca V; Messing J; Bennetzen JL
    Plant Physiol; 2002 Dec; 130(4):1728-38. PubMed ID: 12481055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants.
    Multani DS; Briggs SP; Chamberlin MA; Blakeslee JJ; Murphy AS; Johal GS
    Science; 2003 Oct; 302(5642):81-4. PubMed ID: 14526073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diversity and the evolutionary history of plant immunity genes in two species of Zea.
    Moeller DA; Tiffin P
    Mol Biol Evol; 2005 Dec; 22(12):2480-90. PubMed ID: 16120802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic survey of NPF and NRT2 transporter gene families in five inbred maize lines and their responses to pathogens infection.
    Xia X; Wei Q; Xiao C; Ye Y; Li Z; Marivingt-Mounir C; Chollet JF; Liu W; Wu H
    Genomics; 2023 Mar; 115(2):110555. PubMed ID: 36596368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins?
    Mulvenna JP; Mylne JS; Bharathi R; Burton RA; Shirley NJ; Fincher GB; Anderson MA; Craik DJ
    Plant Cell; 2006 Sep; 18(9):2134-44. PubMed ID: 16935986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of the wound-induced serine protease inhibitor wip1 in Zea and related genera.
    Tiffin P; Gaut BS
    Mol Biol Evol; 2001 Nov; 18(11):2092-101. PubMed ID: 11606705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.
    Zamora A; Sun Q; Hamblin MT; Aquadro CF; Kresovich S
    Mol Biol Evol; 2009 Sep; 26(9):2015-30. PubMed ID: 19506000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of the Abp1 5'-flanking region in maize and the teosintes.
    Elrouby N; Bureau TE
    Plant Physiol; 2000 Sep; 124(1):369-77. PubMed ID: 10982450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of Opaque 2 on beta-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator.
    Cord Neto G; Yunes JA; da Silva MJ; Vettore AL; Arruda P; Leite A
    Plant Mol Biol; 1995 Mar; 27(5):1015-29. PubMed ID: 7766871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Biology. Hormones and the green revolution.
    Salamini F
    Science; 2003 Oct; 302(5642):71-2. PubMed ID: 14526071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of floral branch systems in maize and related grasses.
    Vollbrecht E; Springer PS; Goh L; Buckler ES; Martienssen R
    Nature; 2005 Aug; 436(7054):1119-26. PubMed ID: 16041362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.
    Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G
    Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of maize branches out.
    Martienssen R
    Nature; 1997 Apr; 386(6624):443, 445. PubMed ID: 9087398
    [No Abstract]   [Full Text] [Related]  

  • 17. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus.
    Ong HC; Palmer JD
    BMC Evol Biol; 2006 Jul; 6():55. PubMed ID: 16842621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of apical dominance in maize.
    Doebley J; Stec A; Hubbard L
    Nature; 1997 Apr; 386(6624):485-8. PubMed ID: 9087405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants.
    Murozuka E; Massange-Sánchez JA; Nielsen K; Gregersen PL; Braumann I
    PLoS One; 2018; 13(12):e0209769. PubMed ID: 30592743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species.
    Nomura T; Ishihara A; Imaishi H; Ohkawa H; Endo TR; Iwamura H
    Planta; 2003 Sep; 217(5):776-82. PubMed ID: 12734755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.