These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 23073091)
1. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Hu B; Min M; Zhou W; Du Z; Mohr M; Chen P; Zhu J; Cheng Y; Liu Y; Ruan R Bioresour Technol; 2012 Dec; 126():71-9. PubMed ID: 23073091 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Wang L; Li Y; Chen P; Min M; Chen Y; Zhu J; Ruan RR Bioresour Technol; 2010 Apr; 101(8):2623-8. PubMed ID: 19932957 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Li Y; Chen YF; Chen P; Min M; Zhou W; Martinez B; Zhu J; Ruan R Bioresour Technol; 2011 Apr; 102(8):5138-44. PubMed ID: 21353532 [TBL] [Abstract][Full Text] [Related]
4. Growth optimisation of microalga mutant at high CO₂ concentration to purify undiluted anaerobic digestion effluent of swine manure. Cheng J; Xu J; Huang Y; Li Y; Zhou J; Cen K Bioresour Technol; 2015 Feb; 177():240-6. PubMed ID: 25496944 [TBL] [Abstract][Full Text] [Related]
5. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Wang L; Wang Y; Chen P; Ruan R Appl Biochem Biotechnol; 2010 Dec; 162(8):2324-32. PubMed ID: 20567935 [TBL] [Abstract][Full Text] [Related]
6. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820 [TBL] [Abstract][Full Text] [Related]
7. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Kim S; Park JE; Cho YB; Hwang SJ Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820 [TBL] [Abstract][Full Text] [Related]
8. Fermentation of Chlorella sp. for anaerobic bio-hydrogen production: influences of inoculum-substrate ratio, volatile fatty acids and NADH. Sun J; Yuan X; Shi X; Chu C; Guo R; Kong H Bioresour Technol; 2011 Nov; 102(22):10480-5. PubMed ID: 21967710 [TBL] [Abstract][Full Text] [Related]
9. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate. Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158 [TBL] [Abstract][Full Text] [Related]
10. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Zhou W; Li Y; Min M; Hu B; Chen P; Ruan R Bioresour Technol; 2011 Jul; 102(13):6909-19. PubMed ID: 21546246 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of oil-producing algae as potential biodiesel feedstock. Zhou X; Ge H; Xia L; Zhang D; Hu C Bioresour Technol; 2013 Apr; 134():24-9. PubMed ID: 23500555 [TBL] [Abstract][Full Text] [Related]
12. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Li Y; Zhou W; Hu B; Min M; Chen P; Ruan RR Bioresour Technol; 2011 Dec; 102(23):10861-7. PubMed ID: 21982450 [TBL] [Abstract][Full Text] [Related]
13. Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Deng XY; Gao K; Addy M; Li D; Zhang RC; Lu Q; Ma YW; Cheng YL; Chen P; Liu YH; Ruan R Bioresour Technol; 2018 Jan; 247():716-723. PubMed ID: 30060405 [TBL] [Abstract][Full Text] [Related]
14. The effect of volatile fatty acids on the growth and lipid properties of two microalgae strains during batch heterotrophic cultivation. Su K; Song M; Yu Z; Wang C; Sun J; Li X; Liu N; Mou Y; Lu T Chemosphere; 2021 Nov; 283():131204. PubMed ID: 34467947 [TBL] [Abstract][Full Text] [Related]
15. Development of an attached microalgal growth system for biofuel production. Johnson MB; Wen Z Appl Microbiol Biotechnol; 2010 Jan; 85(3):525-34. PubMed ID: 19636552 [TBL] [Abstract][Full Text] [Related]
16. Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp. Yan C; Zheng Z Bioresour Technol; 2013 Jul; 139():292-9. PubMed ID: 23665690 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832 [TBL] [Abstract][Full Text] [Related]
18. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786 [TBL] [Abstract][Full Text] [Related]
19. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Kobayashi N; Noel EA; Barnes A; Watson A; Rosenberg JN; Erickson G; Oyler GA Bioresour Technol; 2013 Dec; 150():377-86. PubMed ID: 24185420 [TBL] [Abstract][Full Text] [Related]
20. Microalgae Cultivation Using Screened Liquid Dairy Manure Applying Different Folds of Dilution: Nutrient Reduction Analysis with Emphasis on Phosphorus Removal. Wang L; Chen L; Wu SX Appl Biochem Biotechnol; 2020 Oct; 192(2):381-391. PubMed ID: 32385813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]