BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23073108)

  • 1. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.
    Nehdi IA; Sbihi H; Tan CP; Al-Resayes SI
    Bioresour Technol; 2012 Dec; 126():193-7. PubMed ID: 23073108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: biodiesel production and characterization.
    Saloua F; Saber C; Hedi Z
    Bioresour Technol; 2010 May; 101(9):3091-6. PubMed ID: 20060293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel.
    Moser BR; Vaughn SF
    Bioresour Technol; 2010 Jan; 101(2):646-53. PubMed ID: 19740653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of converting Cannabis sativa L. oil into biodiesel.
    Li SY; Stuart JD; Li Y; Parnas RS
    Bioresour Technol; 2010 Nov; 101(21):8457-60. PubMed ID: 20624607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil.
    Jiao J; Gai QY; Wei FY; Luo M; Wang W; Fu YJ; Zu YG
    Bioresour Technol; 2013 Sep; 143():653-6. PubMed ID: 23816358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.
    Alptekin E; Canakci M; Sanli H
    Waste Manag; 2014 Nov; 34(11):2146-54. PubMed ID: 25151441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiochemical Properties, Lipid Breakdown, β-Carotenoids, Tocopherols, Vitamins, Amino and Fatty Acid Profiles of Soxhlet Extracted Oil from Different Garden Cress Seed (Lepidium sativum L.) Genotypes in Ethiopia.
    Teshome A; Dereje B; Nwankwo CS; Okpala COR
    J Oleo Sci; 2022 Sep; 71(9):1299-1308. PubMed ID: 35965087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moringa oleifera oil: a possible source of biodiesel.
    Rashid U; Anwar F; Moser BR; Knothe G
    Bioresour Technol; 2008 Nov; 99(17):8175-9. PubMed ID: 18474424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil.
    Wang L; Yu H
    Bioresour Technol; 2012 May; 112():355-8. PubMed ID: 22440572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
    Juan JC; Kartika DA; Wu TY; Hin TY
    Bioresour Technol; 2011 Jan; 102(2):452-60. PubMed ID: 21094045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research Update on the Therapeutic Potential of Garden Cress (Lepidium sativum Linn.) with Threatened Status.
    Gupta S; Gupta R
    Curr Drug Res Rev; 2023 Oct; ():. PubMed ID: 37929722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel.
    Khot M; Gupta R; Barve K; Zinjarde S; Govindwar S; Kumar AR
    J Microbiol Biotechnol; 2015 Apr; 25(4):459-63. PubMed ID: 25341469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ
    Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico molecular modeling of cold pressed garden cress (Lepidium sativum L.) seed oil toward the binding pocket of antimicrobial resistance Staphylococcus aureus DNA-gyrase complexes.
    Almuhayawi MS; Alruhaili MH; Gattan HS; Alharbi MT; Nagshabandi MK; Al Jaouni SK; Selim S; Elnosary ME
    Eur Rev Med Pharmacol Sci; 2023 Feb; 27(4):1238-1247. PubMed ID: 36876662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed oils from non-conventional sources in north-east India: potential feedstock for production of biodiesel.
    Barua P; Dutta K; Basumatary S; Deka DC; Deka DC
    Nat Prod Res; 2014; 28(8):577-80. PubMed ID: 24483850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of tung oil biodiesel and variation of fuel properties during storage.
    Shang Q; Lei J; Jiang W; Lu H; Liang B
    Appl Biochem Biotechnol; 2012 Sep; 168(1):106-15. PubMed ID: 21912841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships among flash point, carbon residue, viscosity and some impurities in biodiesel after ethanolysis of rapeseed oil.
    Cernoch M; Hájek M; Skopal F
    Bioresour Technol; 2010 Oct; 101(19):7397-401. PubMed ID: 20537532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of superior Pistacia chinensis accession with high-quality seed oil and biodiesel production and revelation of LEC1/WRI1-mediated high oil accumulative mechanism for better developing woody biodiesel.
    Chen F; Lin W; Li W; Hu J; Li Z; Shi L; Zhang Z; Xiu Y; Lin S
    BMC Plant Biol; 2023 May; 23(1):268. PubMed ID: 37208597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed Viability Test: A Semi-Throughput Method to Screen Oilseeds for Biodiesel Production.
    Eevera T; Ramesh D; Djanaguiraman M; Umarani R
    Methods Mol Biol; 2021; 2290():129-138. PubMed ID: 34009587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions.
    Chen YH; Chen JH; Chang CY; Chang CC
    Bioresour Technol; 2010 Dec; 101(24):9521-6. PubMed ID: 20702090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.