These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23073235)

  • 21. T1-weighted brain imaging with a 32-channel coil at 3T using TurboFLASH BLADE compared with standard cartesian k-space sampling.
    Attenberger UI; Runge VM; Williams KD; Stemmer A; Michaely HJ; Schoenberg SO; Reiser MF; Wintersperger BJ
    Invest Radiol; 2009 Mar; 44(3):177-83. PubMed ID: 19151605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Compressed Sensing SENSE pMRI Reconstruction With Joint Sparsity Promotion.
    Chun IY; Adcock B; Talavage TM
    IEEE Trans Med Imaging; 2016 Jan; 35(1):354-68. PubMed ID: 26336120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MR image reconstruction of sparsely sampled 3D k-space data by projection-onto-convex sets.
    Peng H; Sabati M; Lauzon L; Frayne R
    Magn Reson Imaging; 2006 Jul; 24(6):761-73. PubMed ID: 16824971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of k-t SENSE/k-t BLAST with conventional SENSE applied to BOLD fMRI.
    Utting JF; Kozerke S; Schnitker R; Niendorf T
    J Magn Reson Imaging; 2010 Jul; 32(1):235-41. PubMed ID: 20578030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging.
    Chaâri L; Pesquet JC; Benazza-Benyahia A; Ciuciu P
    Med Image Anal; 2011 Apr; 15(2):185-201. PubMed ID: 21106436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Undersampling patterns in k-space for compressed sensing MRI using two-dimensional Cartesian sampling.
    Kojima S; Shinohara H; Hashimoto T; Suzuki S
    Radiol Phys Technol; 2018 Sep; 11(3):303-319. PubMed ID: 30078080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T.
    Willinek WA; Hadizadeh DR; von Falkenhausen M; Urbach H; Hoogeveen R; Schild HH; Gieseke J
    J Magn Reson Imaging; 2008 Jun; 27(6):1455-60. PubMed ID: 18504736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation.
    Shi X; Ma X; Wu W; Huang F; Yuan C; Guo H
    Magn Reson Med; 2015 May; 73(5):1775-85. PubMed ID: 24824404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging.
    Suh CH; Jung SC; Lee HB; Cho SJ
    Korean J Radiol; 2019 Mar; 20(3):487-497. PubMed ID: 30799580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing.
    Gersing AS; Bodden J; Neumann J; Diefenbach MN; Kronthaler S; Pfeiffer D; Knebel C; Baum T; Schwaiger BJ; Hock A; Rummeny EJ; Woertler K; Karampinos DC
    Eur J Radiol; 2019 Sep; 118():277-284. PubMed ID: 31301872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study.
    Pandit P; Rivoire J; King K; Li X
    Magn Reson Med; 2016 Mar; 75(3):1256-61. PubMed ID: 25885368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MR Image Reconstruction Using a Combination of Compressed Sensing and Partial Fourier Acquisition: ESPReSSo.
    Kustner T; Wurslin C; Gatidis S; Martirosian P; Nikolaou K; Schwenzer NF; Schick F; Yang B; Schmidt H
    IEEE Trans Med Imaging; 2016 Nov; 35(11):2447-2458. PubMed ID: 27295659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel approach for accelerating mouse abdominal MRI by combining respiratory gating and compressed sensing.
    Farias AR; Medeiros DC; Magalhães HA; Moraes MFD; Mendes EMAM
    Magn Reson Imaging; 2018 Jul; 50():45-53. PubMed ID: 29526644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).
    Zhu C; Tian B; Chen L; Eisenmenger L; Raithel E; Forman C; Ahn S; Laub G; Liu Q; Lu J; Liu J; Hess C; Saloner D
    MAGMA; 2018 Jun; 31(3):457-467. PubMed ID: 29209856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits.
    Qian Y; Stenger VA; Boada FE
    Magn Reson Imaging; 2009 Jun; 27(5):656-63. PubMed ID: 19110392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint reconstruction of multiecho MR images using correlated sparsity.
    Majumdar A; Ward RK
    Magn Reson Imaging; 2011 Sep; 29(7):899-906. PubMed ID: 21571476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compressed sensing in dynamic MRI.
    Gamper U; Boesiger P; Kozerke S
    Magn Reson Med; 2008 Feb; 59(2):365-73. PubMed ID: 18228595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging.
    Tobisch A; Schultz T; Stirnberg R; Varela-Mattatall G; Knutsson H; Irarrázaval P; Stöcker T
    NMR Biomed; 2019 Mar; 32(3):e4055. PubMed ID: 30637831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid volumetric OCT image acquisition using compressive sampling.
    Lebed E; Mackenzie PJ; Sarunic MV; Beg MF
    Opt Express; 2010 Sep; 18(20):21003-12. PubMed ID: 20940995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.