These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23073289)

  • 1. Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe.
    Shen X; Jiang Q; Wang J; Dai L; Zou G; Wang ZG; Chen WQ; Jiang W; Ding B
    Chem Commun (Camb); 2012 Nov; 48(92):11301-3. PubMed ID: 23073289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescent probe with restricted intramolecular rotation-induced emission for label-free detection of mercury ions.
    Li S; Deng H; Cao W; Zhang C; Jin S; Xue X; Zhang J; Li F; Zou G; Liang XJ
    Analyst; 2014 Jul; 139(13):3369-72. PubMed ID: 24834450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of the intracellular location and stability of DNA flowers with a label-free fluorescent probe.
    Wei Y; Xu X; Shang Y; Jiang Q; Li C; Ding B
    RSC Adv; 2019 May; 9(27):15205-15209. PubMed ID: 35514862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted photoswitchable probe for nanoscopy of biological structures.
    Dellagiacoma C; Lukinavicius G; Bocchio N; Banala S; Geissbühler S; Märki I; Johnsson K; Lasser T
    Chembiochem; 2010 Jul; 11(10):1361-3. PubMed ID: 20540058
    [No Abstract]   [Full Text] [Related]  

  • 5. Circularly Polarized Luminescence of Achiral Cyanine Molecules Assembled on DNA Templates.
    Jiang Q; Xu X; Yin PA; Ma K; Zhen Y; Duan P; Peng Q; Chen WQ; Ding B
    J Am Chem Soc; 2019 Jun; 141(24):9490-9494. PubMed ID: 31184485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami as a nanoscopic ruler for super-resolution microscopy.
    Steinhauer C; Jungmann R; Sobey TL; Simmel FC; Tinnefeld P
    Angew Chem Int Ed Engl; 2009; 48(47):8870-3. PubMed ID: 19830751
    [No Abstract]   [Full Text] [Related]  

  • 7. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions.
    Lan GY; Huang CC; Chang HT
    Chem Commun (Camb); 2010 Feb; 46(8):1257-9. PubMed ID: 20449269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecule Counts in Localization Microscopy with Organic Fluorophores.
    Karathanasis C; Fricke F; Hummer G; Heilemann M
    Chemphyschem; 2017 Apr; 18(8):942-948. PubMed ID: 28196307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics.
    Hong Y; Häussler M; Lam JW; Li Z; Sin KK; Dong Y; Tong H; Liu J; Qin A; Renneberg R; Tang BZ
    Chemistry; 2008; 14(21):6428-37. PubMed ID: 18512826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accessing molecular dynamics in cells by fluorescence correlation spectroscopy.
    Dittrich P; Malvezzi-Campeggi F; Jahnz M; Schwille P
    Biol Chem; 2001 Mar; 382(3):491-4. PubMed ID: 11347899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of staining selectivity for subcellular structures by carbazole-based cyanine probes in nonlinear optical microscopy.
    Zheng ML; Fujita K; Chen WQ; Smith NI; Duan XM; Kawata S
    Chembiochem; 2011 Jan; 12(1):52-5. PubMed ID: 21161969
    [No Abstract]   [Full Text] [Related]  

  • 12. A practical approach for the detection of DNA nanostructures in single live human cells by fluorescence microscopy.
    Bergamini C; Angelini P; Rhoden KJ; Porcelli AM; Fato R; Zuccheri G
    Methods; 2014 May; 67(2):185-92. PubMed ID: 24440746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoswitching of monomeric and dimeric DNA-intercalating cyanine dyes for super-resolution microscopy applications.
    Flors C
    Photochem Photobiol Sci; 2010 May; 9(5):643-8. PubMed ID: 20442922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward quantitative fluorescence microscopy with DNA origami nanorulers.
    Beater S; Raab M; Tinnefeld P
    Methods Cell Biol; 2014; 123():449-66. PubMed ID: 24974042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures.
    Schröder T; Scheible MB; Steiner F; Vogelsang J; Tinnefeld P
    Nano Lett; 2019 Feb; 19(2):1275-1281. PubMed ID: 30681342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures.
    Raab M; Jusuk I; Molle J; Buhr E; Bodermann B; Bergmann D; Bosse H; Tinnefeld P
    Sci Rep; 2018 Jan; 8(1):1780. PubMed ID: 29379061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directing Single-Molecule Emission with DNA Origami-Assembled Optical Antennas.
    Hübner K; Pilo-Pais M; Selbach F; Liedl T; Tinnefeld P; Stefani FD; Acuna GP
    Nano Lett; 2019 Sep; 19(9):6629-6634. PubMed ID: 31449421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a multinuclear Zn(II) complex as a new molecular probe for fluorescence imaging of His-tag fused proteins.
    Fujishima SH; Nonaka H; Uchinomiya SH; Kawase YA; Ojida A; Hamachi I
    Chem Commun (Camb); 2012 Jan; 48(4):594-6. PubMed ID: 22113378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and photophysical properties of dUTP and internally DNA bound fluorophores for optimized signal detection in biological formats.
    Linck L; Kapusta P; Resch-Genger U
    Photochem Photobiol; 2012; 88(4):867-75. PubMed ID: 22360746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy.
    Johnson-Buck A; Walter NG
    Methods; 2014 May; 67(2):177-84. PubMed ID: 24602840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.