These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
643 related articles for article (PubMed ID: 23073370)
1. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Stefanowicz AM; Kapusta P; Szarek-Łukaszewska G; Grodzińska K; Niklińska M; Vogt RD Sci Total Environ; 2012 Nov; 439():211-9. PubMed ID: 23073370 [TBL] [Abstract][Full Text] [Related]
2. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland). Kapusta P; Szarek-Łukaszewska G; Stefanowicz AM Environ Pollut; 2011 Jun; 159(6):1516-22. PubMed ID: 21477907 [TBL] [Abstract][Full Text] [Related]
3. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Stefanowicz AM; Niklińska M; Kapusta P; Szarek-Łukaszewska G Sci Total Environ; 2010 Nov; 408(24):6134-41. PubMed ID: 20870268 [TBL] [Abstract][Full Text] [Related]
4. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites. Stefanowicz AM; Kapusta P; Zubek S; Stanek M; Woch MW Chemosphere; 2020 Feb; 240():124922. PubMed ID: 31563718 [TBL] [Abstract][Full Text] [Related]
5. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
6. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Liao M; Xie XM Ecotoxicol Environ Saf; 2007 Feb; 66(2):217-23. PubMed ID: 16488009 [TBL] [Abstract][Full Text] [Related]
7. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
8. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
9. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. Liao M; Chen CL; Huang CY J Environ Sci (China); 2005; 17(5):832-7. PubMed ID: 16313013 [TBL] [Abstract][Full Text] [Related]
10. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Kapusta P; Sobczyk Ł Sci Total Environ; 2015 Dec; 536():517-526. PubMed ID: 26233783 [TBL] [Abstract][Full Text] [Related]
11. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
12. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay. Aruoja V; Kurvet I; Dubourguier HC; Kahru A Environ Toxicol; 2004 Aug; 19(4):396-402. PubMed ID: 15269912 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
14. Microbial indicators of heavy metal contamination in urban and rural soils. Yang Y; Campbell CD; Clark L; Cameron CM; Paterson E Chemosphere; 2006 Jun; 63(11):1942-52. PubMed ID: 16310826 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Ferreira da Silva E; Almeida SF; Nunes ML; Luís AT; Borg F; Hedlund M; de Sá CM; Patinha C; Teixeira P Sci Total Environ; 2009 Oct; 407(21):5620-36. PubMed ID: 19647289 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Conesa HM; Faz A; Arnaldos R Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
18. Effect of amendment C:N ratio on plant richness, cover and metal content for acidic Pb and Zn mine tailings in Leadville, Colorado. Brown S; Devolder P; Compton H; Henry C Environ Pollut; 2007 Sep; 149(2):165-72. PubMed ID: 17368677 [TBL] [Abstract][Full Text] [Related]
19. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104 [TBL] [Abstract][Full Text] [Related]
20. Factors of variation in beech forest understory communities on waste heaps left by historical Zn-Pb ore mining. Woch MW Ecotoxicol Environ Saf; 2018 Nov; 164():681-689. PubMed ID: 30170317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]