These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23073461)

  • 1. Dual catalysis mode for the dicarbonyl reduction catalyzed by diketoreductase.
    Lu M; Huang Y; White MA; Wu X; Liu N; Cheng X; Chen Y
    Chem Commun (Camb); 2012 Nov; 48(92):11352-4. PubMed ID: 23073461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dicarbonyl reduction by single enzyme for the preparation of chiral diols.
    Chen Y; Chen C; Wu X
    Chem Soc Rev; 2012 Mar; 41(5):1742-53. PubMed ID: 22222186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases.
    Johanson T; Katz M; Gorwa-Grauslund MF
    FEMS Yeast Res; 2005 Apr; 5(6-7):513-25. PubMed ID: 15780652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases.
    Gadda G
    Biochemistry; 2008 Dec; 47(52):13745-53. PubMed ID: 19053234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in the enzymatic reduction of ketones.
    Moore JC; Pollard DJ; Kosjek B; Devine PN
    Acc Chem Res; 2007 Dec; 40(12):1412-9. PubMed ID: 18052114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration.
    Ni Y; Li CX; Wang LJ; Zhang J; Xu JH
    Org Biomol Chem; 2011 Aug; 9(15):5463-8. PubMed ID: 21670841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins.
    Hölsch K; Weuster-Botz D
    Biotechnol Appl Biochem; 2010 Aug; 56(4):131-40. PubMed ID: 20590527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genomic search approach to identify carbonyl reductases in Gluconobacter oxydans for enantioselective reduction of ketones.
    Chen R; Liu X; Lin J; Wei D
    Biosci Biotechnol Biochem; 2014; 78(8):1350-6. PubMed ID: 25130736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereocomplementary bioreduction of β-ketonitrile without ethylated byproduct.
    Xu GC; Yu HL; Zhang ZJ; Xu JH
    Org Lett; 2013 Nov; 15(21):5408-11. PubMed ID: 24144203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies.
    Zhu D; Yang Y; Buynak JD; Hua L
    Org Biomol Chem; 2006 Jul; 4(14):2690-5. PubMed ID: 16826293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective bioreduction of bulky-bulky ketones by a novel ADH from Ralstonia sp.
    Lavandera I; Kern A; Ferreira-Silva B; Glieder A; de Wildeman S; Kroutil W
    J Org Chem; 2008 Aug; 73(15):6003-5. PubMed ID: 18597534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones.
    Nie Y; Xiao R; Xu Y; Montelione GT
    Org Biomol Chem; 2011 Jun; 9(11):4070-8. PubMed ID: 21505708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahydroxynaphthalene reductase: catalytic properties of an enzyme involved in reductive asymmetric naphthol dearomatization.
    Schätzle MA; Flemming S; Husain SM; Richter M; Günther S; Müller M
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2643-6. PubMed ID: 22308069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions.
    Kaluzna IA; Matsuda T; Sewell AK; Stewart JD
    J Am Chem Soc; 2004 Oct; 126(40):12827-32. PubMed ID: 15469278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic diastereo- and enantioselective synthesis of α-alkyl-α,β-dihydroxyketones.
    Giovannini PP; Fantin G; Massi A; Venturi V; Pedrini P
    Org Biomol Chem; 2011 Dec; 9(23):8038-45. PubMed ID: 22006343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line monitoring of bioreductions via membrane introduction mass spectrometry.
    Milagre CD; Milagre HM; Rodrigues JA; Rocha LL; Santos LS; Eberlin MN
    Biotechnol Bioeng; 2005 Jun; 90(7):888-92. PubMed ID: 15834949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M.
    Clark DD; Boyd JM; Ensign SA
    Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase.
    Yuan H; Gadda G
    Biochemistry; 2011 Feb; 50(5):770-9. PubMed ID: 21174412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates.
    Jakoblinnert A; Mladenov R; Paul A; Sibilla F; Schwaneberg U; Ansorge-Schumacher MB; de María PD
    Chem Commun (Camb); 2011 Nov; 47(44):12230-2. PubMed ID: 22005469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverting the enantioselectivity of a carbonyl reductase via substrate-enzyme docking-guided point mutation.
    Zhu D; Yang Y; Majkowicz S; Pan TH; Kantardjieff K; Hua L
    Org Lett; 2008 Feb; 10(4):525-8. PubMed ID: 18205368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.