These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23073461)
1. Dual catalysis mode for the dicarbonyl reduction catalyzed by diketoreductase. Lu M; Huang Y; White MA; Wu X; Liu N; Cheng X; Chen Y Chem Commun (Camb); 2012 Nov; 48(92):11352-4. PubMed ID: 23073461 [TBL] [Abstract][Full Text] [Related]
2. Dicarbonyl reduction by single enzyme for the preparation of chiral diols. Chen Y; Chen C; Wu X Chem Soc Rev; 2012 Mar; 41(5):1742-53. PubMed ID: 22222186 [TBL] [Abstract][Full Text] [Related]
3. Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases. Johanson T; Katz M; Gorwa-Grauslund MF FEMS Yeast Res; 2005 Apr; 5(6-7):513-25. PubMed ID: 15780652 [TBL] [Abstract][Full Text] [Related]
4. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases. Gadda G Biochemistry; 2008 Dec; 47(52):13745-53. PubMed ID: 19053234 [TBL] [Abstract][Full Text] [Related]
5. Advances in the enzymatic reduction of ketones. Moore JC; Pollard DJ; Kosjek B; Devine PN Acc Chem Res; 2007 Dec; 40(12):1412-9. PubMed ID: 18052114 [TBL] [Abstract][Full Text] [Related]
6. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Ni Y; Li CX; Wang LJ; Zhang J; Xu JH Org Biomol Chem; 2011 Aug; 9(15):5463-8. PubMed ID: 21670841 [TBL] [Abstract][Full Text] [Related]
7. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins. Hölsch K; Weuster-Botz D Biotechnol Appl Biochem; 2010 Aug; 56(4):131-40. PubMed ID: 20590527 [TBL] [Abstract][Full Text] [Related]
8. A genomic search approach to identify carbonyl reductases in Gluconobacter oxydans for enantioselective reduction of ketones. Chen R; Liu X; Lin J; Wei D Biosci Biotechnol Biochem; 2014; 78(8):1350-6. PubMed ID: 25130736 [TBL] [Abstract][Full Text] [Related]
17. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M. Clark DD; Boyd JM; Ensign SA Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110 [TBL] [Abstract][Full Text] [Related]
18. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase. Yuan H; Gadda G Biochemistry; 2011 Feb; 50(5):770-9. PubMed ID: 21174412 [TBL] [Abstract][Full Text] [Related]
19. Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Jakoblinnert A; Mladenov R; Paul A; Sibilla F; Schwaneberg U; Ansorge-Schumacher MB; de María PD Chem Commun (Camb); 2011 Nov; 47(44):12230-2. PubMed ID: 22005469 [TBL] [Abstract][Full Text] [Related]
20. Inverting the enantioselectivity of a carbonyl reductase via substrate-enzyme docking-guided point mutation. Zhu D; Yang Y; Majkowicz S; Pan TH; Kantardjieff K; Hua L Org Lett; 2008 Feb; 10(4):525-8. PubMed ID: 18205368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]