These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23073890)

  • 41. Phenotypic characterization of photomorphogenic responses during plant development.
    Kretsch T
    Methods Mol Biol; 2010; 655():189-202. PubMed ID: 20734262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Charge balance--a theoretical basis for modulating pH fluctuations in plant nutrient delivery systems.
    Lea-Cox JD; Stutte GW; Berry WL; Wheeler RM
    Life Support Biosph Sci; 1996; 3(1-2):53-9. PubMed ID: 11539161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transporters for uptake and allocation of organic nitrogen compounds in plants.
    Rentsch D; Schmidt S; Tegeder M
    FEBS Lett; 2007 May; 581(12):2281-9. PubMed ID: 17466985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Whole-organism screening: plants.
    Agee A; Carter D
    Methods Mol Biol; 2009; 486():77-95. PubMed ID: 19347617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of feature point detectors for multimodal image registration in plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    PLoS One; 2019; 14(9):e0221203. PubMed ID: 31568494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response.
    Banerjee BP; Joshi S; Thoday-Kennedy E; Pasam RK; Tibbits J; Hayden M; Spangenberg G; Kant S
    J Exp Bot; 2020 Jul; 71(15):4604-4615. PubMed ID: 32185382
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pot binding as a variable confounding plant phenotype: theoretical derivation and experimental observations.
    Sinclair TR; Manandhar A; Shekoofa A; Rosas-Anderson P; Bagherzadi L; Schoppach R; Sadok W; Rufty TW
    Planta; 2017 Apr; 245(4):729-735. PubMed ID: 27999989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up.
    Fahlgren N; Gehan MA; Baxter I
    Curr Opin Plant Biol; 2015 Apr; 24():93-9. PubMed ID: 25733069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phenomic Approaches and Tools for Phytopathologists.
    Simko I; Jimenez-Berni JA; Sirault XR
    Phytopathology; 2017 Jan; 107(1):6-17. PubMed ID: 27618193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using Infrared Thermography for High-Throughput Plant Phenotyping.
    Fan M; Stamford J; Lawson T
    Methods Mol Biol; 2024; 2790():317-332. PubMed ID: 38649578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances.
    Muñoz-Huerta RF; Guevara-Gonzalez RG; Contreras-Medina LM; Torres-Pacheco I; Prado-Olivarez J; Ocampo-Velazquez RV
    Sensors (Basel); 2013 Aug; 13(8):10823-43. PubMed ID: 23959242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Autophagy and Nutrients Management in Plants.
    Chen Q; Shinozaki D; Luo J; Pottier M; Havé M; Marmagne A; Reisdorf-Cren M; Chardon F; Thomine S; Yoshimoto K; Masclaux-Daubresse C
    Cells; 2019 Nov; 8(11):. PubMed ID: 31726766
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of physiological effects of titanium leaf sprays on plants grown on soil.
    Kuzel S; Hruby M; Cígler P; Tlustos P; Van PN
    Biol Trace Elem Res; 2003 Feb; 91(2):179-90. PubMed ID: 12719613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a Target-to-Sensor Mode Multispectral Imaging Device for High-Throughput and High-Precision Touch-Based Leaf-Scale Soybean Phenotyping.
    Li X; Chen Z; Wei X; Zhao T; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes.
    Galli G; Sabadin F; Costa-Neto GMF; Fritsche-Neto R
    Theor Appl Genet; 2021 Feb; 134(2):715-730. PubMed ID: 33216217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications.
    Cai J; Okamoto M; Atieno J; Sutton T; Li Y; Miklavcic SJ
    PLoS One; 2016; 11(6):e0157102. PubMed ID: 27348807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Image analysis is driving a renaissance in growth measurement.
    Spalding EP; Miller ND
    Curr Opin Plant Biol; 2013 Feb; 16(1):100-4. PubMed ID: 23352714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.