These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23074042)
1. Detection of radiation-induced lung injury using hyperpolarized (13)C magnetic resonance spectroscopy and imaging. Thind K; Chen A; Friesen-Waldner L; Ouriadov A; Scholl TJ; Fox M; Wong E; VanDyk J; Hope A; Santyr G Magn Reson Med; 2013 Sep; 70(3):601-9. PubMed ID: 23074042 [TBL] [Abstract][Full Text] [Related]
2. Mapping metabolic changes associated with early Radiation Induced Lung Injury post conformal radiotherapy using hyperpolarized ¹³C-pyruvate Magnetic Resonance Spectroscopic Imaging. Thind K; Jensen MD; Hegarty E; Chen AP; Lim H; Martinez-Santiesteban F; Van Dyk J; Wong E; Scholl TJ; Santyr GE Radiother Oncol; 2014 Feb; 110(2):317-22. PubMed ID: 24440041 [TBL] [Abstract][Full Text] [Related]
3. Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Fox MS; Ouriadov A; Thind K; Hegarty E; Wong E; Hope A; Santyr GE Med Phys; 2014 Jul; 41(7):072302. PubMed ID: 24989401 [TBL] [Abstract][Full Text] [Related]
4. Anatomical, functional and metabolic imaging of radiation-induced lung injury using hyperpolarized MRI. Santyr G; Fox M; Thind K; Hegarty E; Ouriadov A; Jensen M; Scholl TJ; Van Dyk J; Wong E NMR Biomed; 2014 Dec; 27(12):1515-24. PubMed ID: 25156928 [TBL] [Abstract][Full Text] [Related]
5. Quantification of regional early stage gas exchange changes using hyperpolarized (129)Xe MRI in a rat model of radiation-induced lung injury. Doganay O; Stirrat E; McKenzie C; Schulte RF; Santyr GE Med Phys; 2016 May; 43(5):2410. PubMed ID: 27147352 [TBL] [Abstract][Full Text] [Related]
6. Proton and hyperpolarized helium magnetic resonance imaging of radiation-induced lung injury in rats. Ward ER; Hedlund LW; Kurylo WC; Wheeler CT; Cofer GP; Dewhirst MW; Marks LB; Vujaskovic Z Int J Radiat Oncol Biol Phys; 2004 Apr; 58(5):1562-9. PubMed ID: 15050337 [TBL] [Abstract][Full Text] [Related]
7. Non-invasive whole-body plethysmograph for assessment and prediction of radiation-induced lung injury using simultaneously acquired nitric oxide and lung volume measurements. Coates J; Ybarra N; El Naqa I Physiol Meas; 2014 Sep; 35(9):1737-50. PubMed ID: 25119582 [TBL] [Abstract][Full Text] [Related]
8. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Morgan GW; Breit SN Int J Radiat Oncol Biol Phys; 1995 Jan; 31(2):361-9. PubMed ID: 7836090 [TBL] [Abstract][Full Text] [Related]
9. Assessment of early diabetic renal changes with hyperpolarized [1-(13) C]pyruvate. Laustsen C; Østergaard JA; Lauritzen MH; Nørregaard R; Bowen S; Søgaard LV; Flyvbjerg A; Pedersen M; Ardenkjaer-Larsen JH Diabetes Metab Res Rev; 2013 Feb; 29(2):125-9. PubMed ID: 23166087 [TBL] [Abstract][Full Text] [Related]
10. Physiological gas exchange mapping of hyperpolarized Zanette B; Stirrat E; Jelveh S; Hope A; Santyr G Med Phys; 2018 Feb; 45(2):803-816. PubMed ID: 29238999 [TBL] [Abstract][Full Text] [Related]
11. Detection of inflammatory arthritis by using hyperpolarized 13C-pyruvate with MR imaging and spectroscopy. MacKenzie JD; Yen YF; Mayer D; Tropp JS; Hurd RE; Spielman DM Radiology; 2011 May; 259(2):414-20. PubMed ID: 21406626 [TBL] [Abstract][Full Text] [Related]
12. Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe Morphometry: Proof-of-concept demonstration in a rat model. Ouriadov A; Fox M; Hegarty E; Parraga G; Wong E; Santyr GE Magn Reson Med; 2016 Jun; 75(6):2421-31. PubMed ID: 26154889 [TBL] [Abstract][Full Text] [Related]
13. A selenocysteine derivative therapy affects radiation-induced pneumonitis in the mouse. Kunwar A; Jain VK; Priyadarsini KI; Haston CK Am J Respir Cell Mol Biol; 2013 Oct; 49(4):654-61. PubMed ID: 23721109 [TBL] [Abstract][Full Text] [Related]
14. Quantitative evaluation of radiation-induced lung injury with hyperpolarized xenon magnetic resonance. Li H; Zhang Z; Zhao X; Sun X; Ye C; Zhou X Magn Reson Med; 2016 Aug; 76(2):408-16. PubMed ID: 26400753 [TBL] [Abstract][Full Text] [Related]
15. Oxytocin: A Shield against Radiation-Induced Lung Injury in Rats. Kayalı A; Arda DB; Bora ES; Uyanikgil Y; Atasoy Ö; Erbaş O Tomography; 2024 Aug; 10(9):1342-1353. PubMed ID: 39330747 [TBL] [Abstract][Full Text] [Related]
16. Acute Radiation-Induced Hematopoietic Depletion Does Not Alter the Onset or Severity of Pneumonitis in Mice. Fuentes A; Hyde D; Johnson I; Haston CK Radiat Res; 2021 Sep; 196(3):297-305. PubMed ID: 34129665 [TBL] [Abstract][Full Text] [Related]
17. Differentiating Radiation Necrosis from Brain Tumor Using Hyperpolarized Carbon-13 MR Metabolic Imaging. Park I; Kim S; Pucciarelli D; Song J; Choi JM; Lee KH; Kim YH; Jung S; Yoon W; Nakamura JL Mol Imaging Biol; 2021 Jun; 23(3):417-426. PubMed ID: 33442835 [TBL] [Abstract][Full Text] [Related]
18. In vivo imaging of the progression of acute lung injury using hyperpolarized [1- Pourfathi M; Xin Y; Kadlecek SJ; Cereda MF; Profka H; Hamedani H; Siddiqui SM; Ruppert K; Drachman NA; Rajaei JN; Rizi RR Magn Reson Med; 2017 Dec; 78(6):2106-2115. PubMed ID: 28074497 [TBL] [Abstract][Full Text] [Related]
19. Multimodal assessment of in vivo metabolism with hyperpolarized [1-13C]MR spectroscopy and 18F-FDG PET imaging in hepatocellular carcinoma tumor-bearing rats. Menzel MI; Farrell EV; Janich MA; Khegai O; Wiesinger F; Nekolla S; Otto AM; Haase A; Schulte RF; Schwaiger M J Nucl Med; 2013 Jul; 54(7):1113-9. PubMed ID: 23596002 [TBL] [Abstract][Full Text] [Related]
20. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Zeng QS; Li CF; Liu H; Zhen JH; Feng DC Int J Radiat Oncol Biol Phys; 2007 May; 68(1):151-8. PubMed ID: 17289287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]