These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Incidence of chromosome numerical changes in multiple myeloma: fluorescence in situ hybridization analysis using 15 chromosome-specific probes. Tabernero D; San Miguel JF; Garcia-Sanz M; Nájera L; García-Isidoro M; Peréz-Simon JA; Gonzalez M; Wiegant J; Raap AK; Orfão A Am J Pathol; 1996 Jul; 149(1):153-61. PubMed ID: 8686739 [TBL] [Abstract][Full Text] [Related]
6. Identification of recurrent chromosomal breakpoints in multiple myeloma with complex karyotypes by combined G-banding, spectral karyotyping, and fluorescence in situ hybridization analyses. Sáez B; Martín-Subero JI; Largo C; Martín MC; Odero MD; Prosper F; Siebert R; Calasanz MJ; Cigudosa JC Cancer Genet Cytogenet; 2006 Sep; 169(2):143-9. PubMed ID: 16938572 [TBL] [Abstract][Full Text] [Related]
7. Karyotypic evolution pathways in medulloblastoma/primitive neuroectodermal tumor determined with a combination of spectral karyotyping, G-banding, and fluorescence in situ hybridization. Cohen N; Betts DR; Tavori U; Toren A; Ram T; Constantini S; Grotzer MA; Amariglio N; Rechavi G; Trakhtenbrot L Cancer Genet Cytogenet; 2004 Feb; 149(1):44-52. PubMed ID: 15104282 [TBL] [Abstract][Full Text] [Related]
8. Interphase fluorescence in situ hybridization in multiple myeloma and monoclonal gammopathy of undetermined significance without and with positive plasma cell identification: analysis of 192 cases from the Region of Southern Denmark. Christensen JH; Abildgaard N; Plesner T; Nibe A; Nielsen O; Sørensen AG; Kerndrup GB; Cancer Genet Cytogenet; 2007 Apr; 174(2):89-99. PubMed ID: 17452249 [TBL] [Abstract][Full Text] [Related]
9. Establishment and characterization of a cytogenetically complex Chinese multiple myeloma-derived cell line with homozygous p53 deletion and cyclin E overexpression. Cheng SH; Ng MH; Tsang KS; Lau KM; Chan JC; Liu HS; Chu RW; Poon CS; Ng HK Int J Oncol; 2004 May; 24(5):1141-8. PubMed ID: 15067335 [TBL] [Abstract][Full Text] [Related]
10. Genetic characterization of Sézary's syndrome by conventional cytogenetics and cross-species color banding fluorescent in situhybridization. Espinet B; Salido M; Pujol RM; Florensa L; Gallardo F; Domingo A; Servitje O; Estrach T; Garcìa-Muret P; Woessner S; Serrano S; Solé F Haematologica; 2004 Feb; 89(2):165-73. PubMed ID: 15003891 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive conventional and molecular cytogenetic characterization of B-CPAP, a human papillary thyroid carcinoma-derived cell line. Dettori T; Frau DV; Garcia JL; Pierantoni G; Lee C; Hernandez JM; Fusco A; Morton CC; Vanni R Cancer Genet Cytogenet; 2004 Jun; 151(2):171-7. PubMed ID: 15172756 [TBL] [Abstract][Full Text] [Related]
12. [Effect of laminin on numerical karyotype variability of kangaroo rat kidney cell lines]. Polianskaia GG; Goriachaia TS; Mikhaĭlova NA; Pinaev GP Tsitologiia; 2003; 45(10):1038-47. PubMed ID: 14989177 [TBL] [Abstract][Full Text] [Related]
13. Dissecting karyotypic patterns in non-hyperdiploid multiple myeloma: an overview on the karyotypic evolution. Jimenez-Zepeda VH; Braggio E; Fonseca R Clin Lymphoma Myeloma Leuk; 2013 Oct; 13(5):552-8. PubMed ID: 23856591 [TBL] [Abstract][Full Text] [Related]
14. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Karpova MB; Schoumans J; Blennow E; Ernberg I; Henter JI; Smirnov AF; Nordenskjöld M; Fadeel B Int J Oncol; 2006 Mar; 28(3):605-17. PubMed ID: 16465364 [TBL] [Abstract][Full Text] [Related]
15. Cytogenetic studies on human myeloma cell lines. Jernberg H; Zech L; Nilsson K Int J Cancer; 1987 Dec; 40(6):811-7. PubMed ID: 3500922 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Wong N; Lai P; Pang E; Leung TW; Lau JW; Johnson PJ Hepatology; 2000 Nov; 32(5):1060-8. PubMed ID: 11050057 [TBL] [Abstract][Full Text] [Related]
17. Nonrandom chromosomal changes in transitional cell carcinoma of the bladder. Gibas Z; Prout GR; Connolly JG; Pontes JE; Sandberg AA Cancer Res; 1984 Mar; 44(3):1257-64. PubMed ID: 6692407 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Rasillo A; Tabernero MD; Sánchez ML; Pérez de Andrés M; Martín Ayuso M; Hernández J; Moro MJ; Fernández-Calvo J; Sayagués JM; Bortoluci A; San Miguel JF; Orfao A Cancer; 2003 Feb; 97(3):601-9. PubMed ID: 12548602 [TBL] [Abstract][Full Text] [Related]
19. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. Li L; McCormack AA; Nicholson JM; Fabarius A; Hehlmann R; Sachs RK; Duesberg PH Cancer Genet Cytogenet; 2009 Jan; 188(1):1-25. PubMed ID: 19061776 [TBL] [Abstract][Full Text] [Related]
20. [Karyotype analysis of amniotic fluid cells and comparison of chromosomal abnormality rate during second trimester]. Zhang YP; Wu JP; Li XT; Lei CX; Xu JZ; Yin M Zhonghua Fu Chan Ke Za Zhi; 2011 Sep; 46(9):644-8. PubMed ID: 22176986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]