BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 23074860)

  • 1. [Molecular and functional identification of sodium channels in K562 cells].
    Sudarikova AV; Vasil'ev IO; Morachevskaia EA; Neguliaev IuA
    Tsitologiia; 2012; 54(7):573-9. PubMed ID: 23074860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amiloride-insensitive sodium channels are directly regulated by actin cytoskeleton dynamics in human lymphoma cells.
    Sudarikova AV; Tsaplina OA; Chubinskiy-Nadezhdin VI; Morachevskaya EA; Negulyaev YA
    Biochem Biophys Res Commun; 2015 May; 461(1):54-8. PubMed ID: 25858317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Inhibiting and stimulating effect of amiloride on potential-dependent cation channels in K562 cells].
    Starushchenko AV; Neguliaev IuA; Morachevskaia EZ
    Tsitologiia; 2002; 44(7):676-80. PubMed ID: 12455378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular protease trypsin activates amiloride-insensitive sodium channels in human leukemia cells.
    Sudarikova AV; Vasileva VY; Vassilieva IO; Negulyaev YA; Morachevskaya EA; Chubinskiy-Nadezhdin VI
    J Cell Biochem; 2019 Jan; 120(1):461-469. PubMed ID: 30203535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Mg(2+)-dependent cation channels in human leukemia K562 cells.
    Semenova SB; Fomina AF; Vassilieva IO; Negulyaev YA
    J Cell Physiol; 2005 Dec; 205(3):372-8. PubMed ID: 15895364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-insensitive Na channels of different selectivity in human leukemic cells.
    Negulyaev YuA ; Maximov AV; Vedernikova EA; Katina IE
    Gen Physiol Biophys; 1997 Jun; 16(2):163-73. PubMed ID: 9437257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capsazepine activates amiloride-insensitive ENaC-like channels in human leukemia cells.
    Lysikova DV; Vasileva VY; Chubinskiy-Nadezhdin VI; Morachevskaya EA; Sudarikova AV
    Biochem Biophys Res Commun; 2023 Dec; 687():149187. PubMed ID: 37944472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium channels in the apical membrane of human nasal epithelial cells.
    Zhang X; Guo Y; Dong Z; Yang Z; Zhang W
    Chin Med J (Engl); 2001 Mar; 114(3):313-6. PubMed ID: 11780321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes.
    Segal A; Awayda MS; Eggermont J; Van Driessche W; Weber WM
    Pflugers Arch; 2002 Mar; 443(5-6):882-91. PubMed ID: 11889589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Functional properties and cytoskeletal-dependent regulation of sodium channels in leukemia cell membranes].
    Vedernikova EA; Maksimov AV; Neguliaev IuA
    Tsitologiia; 1997; 39(12):1142-51. PubMed ID: 9505353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The epithelial sodium channel δ-subunit: new notes for an old song.
    Giraldez T; Rojas P; Jou J; Flores C; Alvarez de la Rosa D
    Am J Physiol Renal Physiol; 2012 Aug; 303(3):F328-38. PubMed ID: 22573384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia.
    Lebowitz J; An B; Edinger RS; Zeidel ML; Johnson JP
    Am J Physiol Renal Physiol; 2003 Sep; 285(3):F524-31. PubMed ID: 12746257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional properties of sodium channels in cholesterol-depleted K562 cells].
    Sudarikova AV; Chubinskiĭ-Nadezhdin VI; Neguliaev IuA; Morachevskaia EA
    Tsitologiia; 2009; 51(8):676-83. PubMed ID: 19799352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells.
    Bigiani A; Cuoghi V
    J Neurophysiol; 2007 Oct; 98(4):2483-7. PubMed ID: 17686911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and functional expression of a new epithelial sodium channel delta subunit isoform differentially expressed in neurons of the human and monkey telencephalon.
    Giraldez T; Afonso-Oramas D; Cruz-Muros I; Garcia-Marin V; Pagel P; González-Hernández T; Alvarez de la Rosa D
    J Neurochem; 2007 Aug; 102(4):1304-15. PubMed ID: 17472699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model.
    Horisberger JD
    Pflugers Arch; 2003 Jan; 445(4):522-8. PubMed ID: 12548399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium permeation through mechanosensitive channels: single-current measurements.
    Staruschenko AV; Sudarikova AV; Negulyaev YA; Morachevskaya EA
    Cell Res; 2006 Aug; 16(8):723-30. PubMed ID: 16871269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular ENaC proteins are required for renal myogenic constriction.
    Jernigan NL; Drummond HA
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F891-901. PubMed ID: 15914781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+.
    Leonhard-Marek S; Stumpff F; Brinkmann I; Breves G; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2005 Apr; 288(4):G630-45. PubMed ID: 15550561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta1 decreases epithelial sodium channel functionality in renal collecting duct cells via a Smad4-dependent pathway.
    Chang CT; Hung CC; Chen YC; Yen TH; Wu MS; Yang CW; Phillips A; Tian YC
    Nephrol Dial Transplant; 2008 Apr; 23(4):1126-34. PubMed ID: 18045816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.