BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 23074884)

  • 1. Catalytic and molecular properties of rabbit liver carboxylesterase acting on 1,8-cineole derivatives.
    del Loandos MH; Muro AC; Villecco MB; Masman MF; Luiten PG; Andujar SA; Suvirec FD; Enriz RD
    Nat Prod Commun; 2012 Sep; 7(9):1117-22. PubMed ID: 23074884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and absolute configuration of (1R,4R)-(+)-3-oxo-, (1S,4S)-(-)-3-oxo- and (1R,3S,4R)-(+)-3-acetyloxy-5-oxo-1 ,8-cineole.
    Loandos Mdel H; Villecco MB; Burgueño-Tapia E; Joseph-Nathan P; Catalán CA
    Nat Prod Commun; 2009 Nov; 4(11):1537-45. PubMed ID: 19967986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase.
    Croteau R; Alonso WR; Koepp AE; Johnson MA
    Arch Biochem Biophys; 1994 Feb; 309(1):184-92. PubMed ID: 8117108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbicidal activity of cineole derivatives.
    Barton AF; Dell B; Knight AR
    J Agric Food Chem; 2010 Sep; 58(18):10147-55. PubMed ID: 20715837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the mirror: pH-controlled chirality generation from a meso ligand to a racemic ligand.
    Zhang L; Zhang J; Li ZJ; Qin YY; Lin QP; Yao YG
    Chemistry; 2009; 15(4):989-1000. PubMed ID: 19086049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases.
    Piechulla B; Bartelt R; Brosemann A; Effmert U; Bouwmeester H; Hippauf F; Brandt W
    Plant Physiol; 2016 Dec; 172(4):2120-2131. PubMed ID: 27729471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoenzymatic synthesis of (2R,3R,4R)-dehydroxymethylepoxyquinomicin (DHMEQ), a new activator of antioxidant transcription factor Nrf2.
    Niitsu Y; Hakamata M; Goto Y; Higashi T; Shoji M; Sugai T; Umezawa K
    Org Biomol Chem; 2011 Jun; 9(12):4635-41. PubMed ID: 21541373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 1,8-cineole on the dynamics of lipids and proteins of stratum corneum.
    Anjos JL; Neto Dde S; Alonso A
    Int J Pharm; 2007 Dec; 345(1-2):81-7. PubMed ID: 17600646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the fatty acid chain length specificity of the carboxylesterase PA3859 from Pseudomonas aeruginosa: A combined structural, biochemical and computational study.
    Pesaresi A; Lamba D
    Biochimie; 2010 Dec; 92(12):1787-92. PubMed ID: 20850500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor qualities and thresholds of physiological metabolites of 1,8-cineole as an example for structure-activity relationships considering chirality aspects.
    Kirsch F; Buettner A
    Chem Biodivers; 2013 Sep; 10(9):1683-95. PubMed ID: 24078601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cineole biodegradation: molecular cloning, expression and characterisation of (1R)-6beta-hydroxycineole dehydrogenase from Citrobacter braakii.
    Slessor KE; Stok JE; Cavaignac SM; Hawkes DB; Ghasemi Y; De Voss JJ
    Bioorg Chem; 2010 Apr; 38(2):81-6. PubMed ID: 20089292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in Intestinal Hydrolytic Activities between Cynomolgus Monkeys and Humans: Evaluation of Substrate Specificities Using Recombinant Carboxylesterase 2 Isozymes.
    Igawa Y; Fujiwara S; Ohura K; Hirokawa T; Nishizawa Y; Uehara S; Uno Y; Imai T
    Mol Pharm; 2016 Sep; 13(9):3176-86. PubMed ID: 27454346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient production of (S)-naproxen with (R)-substrate recycling using an overexpressed carboxylesterase BsE-NP01.
    Liu X; Xu JH; Pan J; Zhao J
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1574-84. PubMed ID: 20237863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved chemo-enzymatic synthesis of 1-beta-O-acyl glucuronides: highly chemoselective enzymatic removal of protecting groups from corresponding methyl acetyl derivatives.
    Baba A; Yoshioka T
    J Org Chem; 2007 Dec; 72(25):9541-9. PubMed ID: 17985922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformation and butyrylcholinesterase inhibitory activity of (-)-caryophyllene oxide and its derivatives.
    Choudhary MI; Siddiqui ZA; Nawaz SA; Atta-ur-Rahman
    J Nat Prod; 2006 Oct; 69(10):1429-34. PubMed ID: 17067156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective trans dihydroxylation of nonactivated C-C double bonds of aliphatic heterocycles with Sphingomonas sp. HXN-200.
    Chang D; Heringa MF; Witholt B; Li Z
    J Org Chem; 2003 Oct; 68(22):8599-606. PubMed ID: 14575492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary and synergistic roles in enzyme-catalyzed regioselective and complete hydrolytic deprotection of O-acetylated β-D-glucopyranosides of N-arylacetohydroxamic acids.
    Baba A; Yoshioka T
    J Org Chem; 2012 Feb; 77(4):1675-84. PubMed ID: 22283641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam.
    Meharenna YT; Li H; Hawkes DB; Pearson AG; De Voss J; Poulos TL
    Biochemistry; 2004 Jul; 43(29):9487-94. PubMed ID: 15260491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of 1,8-cineole: a thermophysical and theoretical study.
    Aparicio S; Alcalde R; Dávila MJ; García B; Leal JM
    J Phys Chem B; 2007 Mar; 111(12):3167-77. PubMed ID: 17388451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.