These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 23075295)
21. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Bagal-Kestwal D; Karve MS; Kakade B; Pillai VK Biosens Bioelectron; 2008 Dec; 24(4):657-64. PubMed ID: 18667298 [TBL] [Abstract][Full Text] [Related]
24. An AC voltammetry approach for the detection of droplets in microfluidic devices. Gu Y; Fisher AC Analyst; 2013 Aug; 138(16):4448-52. PubMed ID: 23799232 [TBL] [Abstract][Full Text] [Related]
25. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips. Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379 [TBL] [Abstract][Full Text] [Related]
26. Study of bond Elut® Plexa™ PCX cation exchange resin in flow injection column preconcentration system for metal determination by flame atomic absorption spectrometry. Anthemidis AN; Xidia S; Giakisikli G Talanta; 2012 Aug; 97():181-6. PubMed ID: 22841064 [TBL] [Abstract][Full Text] [Related]
27. Detection of polymerase chain reaction fragments using a conducting polymer-modified screen-printed electrode in a microfluidic device. Shiddiky MJ; Park DS; Shim YB Electrophoresis; 2005 Dec; 26(24):4656-63. PubMed ID: 16283692 [TBL] [Abstract][Full Text] [Related]
28. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Afkhami A; Soltani-Felehgari F; Madrakian T; Ghaedi H; Rezaeivala M Anal Chim Acta; 2013 Apr; 771():21-30. PubMed ID: 23522108 [TBL] [Abstract][Full Text] [Related]
29. Optimization of separation of heavy metals by capillary electrophoresis with contactless conductivity detection. Lau HF; Quek NM; Law WS; Zhao JH; Hauser PC; Li SF Electrophoresis; 2011 May; 32(10):1190-4. PubMed ID: 21500211 [TBL] [Abstract][Full Text] [Related]
30. Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Mozammal Hossain MD; Moon JM; Gurudatt NG; Park DS; Choi CS; Shim YB Biosens Bioelectron; 2019 Oct; 142():111515. PubMed ID: 31325673 [TBL] [Abstract][Full Text] [Related]
31. A fast and highly sensitive detection of cholesterol using polymer microfluidic devices and amperometric system. Ruecha N; Siangproh W; Chailapakul O Talanta; 2011 Jun; 84(5):1323-8. PubMed ID: 21641446 [TBL] [Abstract][Full Text] [Related]
32. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
33. Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis. Chailapakul O; Korsrisakul S; Siangproh W; Grudpan K Talanta; 2008 Jan; 74(4):683-9. PubMed ID: 18371693 [TBL] [Abstract][Full Text] [Related]
34. Electrochemical sensing in paper-based microfluidic devices. Nie Z; Nijhuis CA; Gong J; Chen X; Kumachev A; Martinez AW; Narovlyansky M; Whitesides GM Lab Chip; 2010 Feb; 10(4):477-83. PubMed ID: 20126688 [TBL] [Abstract][Full Text] [Related]
35. Liquid membrane operations in a microfluidic device for selective separation of metal ions. Maruyama T; Matsushita H; Uchida J; Kubota F; Kamiya N; Goto M Anal Chem; 2004 Aug; 76(15):4495-500. PubMed ID: 15283593 [TBL] [Abstract][Full Text] [Related]
36. Sample injection and electrophoretic separation on a simple laminated paper based analytical device. Xu C; Zhong M; Cai L; Zheng Q; Zhang X Electrophoresis; 2016 Feb; 37(3):476-81. PubMed ID: 26542435 [TBL] [Abstract][Full Text] [Related]
37. Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Tarley CR; Santos VS; Baêta BE; Pereira AC; Kubota LT J Hazard Mater; 2009 Sep; 169(1-3):256-62. PubMed ID: 19398268 [TBL] [Abstract][Full Text] [Related]
38. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Park S; Zhang Y; Wang TH; Yang S Lab Chip; 2011 Sep; 11(17):2893-900. PubMed ID: 21776517 [TBL] [Abstract][Full Text] [Related]
39. Portable integrated microfluidic analytical platform for the monitoring and detection of nitrite. Czugala M; Fay C; O'Connor NE; Corcoran B; Benito-Lopez F; Diamond D Talanta; 2013 Nov; 116():997-1004. PubMed ID: 24148507 [TBL] [Abstract][Full Text] [Related]
40. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device. Zhu T; Pei Z; Huang J; Xiong C; Shi S; Fang J Lab Chip; 2010 Jun; 10(12):1557-60. PubMed ID: 20517558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]