These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 23075624)
1. Circulating fibrocytes in ischemia-reperfusion injury and chronic renal allograft fibrosis. Kimura S; Asaka M; Atsumi H; Imura J; Fujimoto K; Chikazawa Y; Nakagawa M; Okuyama H; Yamaya H; Yokoyama H Nephron Clin Pract; 2012; 121(1-2):c16-24. PubMed ID: 23075624 [TBL] [Abstract][Full Text] [Related]
2. A morphometric insight into glomerular and interstitial lesions in acutely rejected renal allografts. Danilewicz M; Wagrowska-Danilewicz M Pol J Pathol; 2003; 54(3):171-7. PubMed ID: 14703283 [TBL] [Abstract][Full Text] [Related]
3. Early human renal allograft fibrosis: cellular mediators. Abo-Zenah H; Katsoudas S; Wild G; de Takats D; Shortland J; Brown CB; El Nahas AM Nephron; 2002 May; 91(1):112-9. PubMed ID: 12021527 [TBL] [Abstract][Full Text] [Related]
4. Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy. Ishii Y; Sawada T; Kubota K; Fuchinoue S; Teraoka S; Shimizu A Kidney Int; 2005 Jan; 67(1):321-32. PubMed ID: 15610258 [TBL] [Abstract][Full Text] [Related]
5. Increased density of interstitial mast cells in amyloid A renal amyloidosis. Tóth T; Tóth-Jakatics R; Jimi S; Takebayashi S Mod Pathol; 2000 Sep; 13(9):1020-8. PubMed ID: 11007043 [TBL] [Abstract][Full Text] [Related]
6. Correlative insights into the immunoexpression of transforming growth factor beta-1 in acutely rejected renal allografts. Danilewicz M; Wagrowska-Danilewicz M Pathol Res Pract; 2006; 202(1):9-15. PubMed ID: 16343799 [TBL] [Abstract][Full Text] [Related]
7. Interstitial expression of heat-shock protein 47 correlates with capillary deposition of complement split product C4d in chronic allograft nephropathy. Ohba K; Miyata Y; Koga S; Nishikido M; Kanetake H; Nazneen A; Razzaque MS; Taguchi T Clin Transplant; 2005 Dec; 19(6):810-6. PubMed ID: 16313330 [TBL] [Abstract][Full Text] [Related]
8. Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis. Sund S; Grimm P; Reisaeter AV; Hovig T Nephrol Dial Transplant; 2004 Nov; 19(11):2838-45. PubMed ID: 15385637 [TBL] [Abstract][Full Text] [Related]
9. Peritubular capillary preservation with COMP-angiopoietin-1 decreases ischemia-reperfusion-induced acute kidney injury. Jung YJ; Kim DH; Lee AS; Lee S; Kang KP; Lee SY; Jang KY; Sung MJ; Park SK; Kim W Am J Physiol Renal Physiol; 2009 Oct; 297(4):F952-60. PubMed ID: 19656917 [TBL] [Abstract][Full Text] [Related]
10. Ischemic postconditioning inhibits the renal fibrosis induced by ischemia-reperfusion injury in rats. Weng X; Shen H; Kuang Y; Liu X; Chen Z; Zhu H; Jiang B; Zhu G; Chen H Urology; 2012 Aug; 80(2):484.e1-7. PubMed ID: 22578919 [TBL] [Abstract][Full Text] [Related]
11. Relationship between alpha-smooth muscle actin expression and fibrotic changes in human kidney. Boukhalfa G; Desmoulière A; Rondeau E; Gabbiani G; Sraer JD Exp Nephrol; 1996; 4(4):241-7. PubMed ID: 8864727 [TBL] [Abstract][Full Text] [Related]
12. Loss of peritubular capillaries in the development of chronic allograft nephropathy. Ishii Y; Sawada T; Kubota K; Fuchinoue S; Teraoka S; Shimizu A Transplant Proc; 2005 Mar; 37(2):981-3. PubMed ID: 15848597 [TBL] [Abstract][Full Text] [Related]
13. Role of peritubular capillaries and vascular endothelial growth factor in chronic allograft nephropathy. Modelli de Andrade LG; Viero RM; Carvalho MF Transplant Proc; 2009 Nov; 41(9):3720-5. PubMed ID: 19917374 [TBL] [Abstract][Full Text] [Related]
14. Interstitial expression of alpha-SMA: an early marker of chronic renal allograft dysfunction. Badid C; Desmouliere A; Babici D; Hadj-Aissa A; McGregor B; Lefrancois N; Touraine JL; Laville M Nephrol Dial Transplant; 2002 Nov; 17(11):1993-8. PubMed ID: 12401859 [TBL] [Abstract][Full Text] [Related]
15. TAK1 as the mediator in the protective effect of propofol on renal interstitial fibrosis induced by ischemia/reperfusion injury. Wu H; Zhou J; Ou W; Li Y; Liu M; Yang C Eur J Pharmacol; 2017 Sep; 811():134-140. PubMed ID: 28603043 [TBL] [Abstract][Full Text] [Related]
16. Macrophage-to-Myofibroblast Transition Contributes to Interstitial Fibrosis in Chronic Renal Allograft Injury. Wang YY; Jiang H; Pan J; Huang XR; Wang YC; Huang HF; To KF; Nikolic-Paterson DJ; Lan HY; Chen JH J Am Soc Nephrol; 2017 Jul; 28(7):2053-2067. PubMed ID: 28209809 [TBL] [Abstract][Full Text] [Related]
17. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. Broekema M; Harmsen MC; van Luyn MJ; Koerts JA; Petersen AH; van Kooten TG; van Goor H; Navis G; Popa ER J Am Soc Nephrol; 2007 Jan; 18(1):165-75. PubMed ID: 17135399 [TBL] [Abstract][Full Text] [Related]
18. Immunoexpression of alpha-SMA and CD68 in native kidney biopsies. Jercan O; Penescu M; Mălăescu DG Rom J Morphol Embryol; 2012; 53(4):1037-42. PubMed ID: 23303029 [TBL] [Abstract][Full Text] [Related]
19. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Faulkner JL; Szcykalski LM; Springer F; Barnes JL Am J Pathol; 2005 Nov; 167(5):1193-205. PubMed ID: 16251405 [TBL] [Abstract][Full Text] [Related]
20. The influence of tubular phenotypic changes on the development of diffuse interstitial fibrosis in renal allografts. Özdemir BH; Özdemir AA; Colak T; Sezer S; Haberal M Transplant Proc; 2011 Mar; 43(2):527-9. PubMed ID: 21440751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]