These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23075711)

  • 21. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest.
    Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB
    Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest.
    Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG
    J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early selective trans-nasal cooling during CPR improves success of resuscitation in a porcine model of prolonged pulseless electrical activity cardiac arrest.
    Cho JH; Ristagno G; Li Y; Sun S; Weil MH; Tang W
    Resuscitation; 2011 Aug; 82(8):1071-5. PubMed ID: 21592641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Load-distributing band improves ventilation and hemodynamics during resuscitation in a porcine model of prolonged cardiac arrest.
    Wang S; Wu JY; Li CS
    Scand J Trauma Resusc Emerg Med; 2012 Sep; 20():59. PubMed ID: 22938018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest.
    Yannopoulos D; Sigurdsson G; McKnite S; Benditt D; Lurie KG
    Resuscitation; 2004 Apr; 61(1):75-82. PubMed ID: 15081185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The role of pulse oximetry plethysmographic waveform monitoring as a marker of restoration of spontaneous circulation:a pilot study].
    Li C; Xu J; Han F; Zheng L; Fu Y; Yao D; Zhang X; Zhu H; Guo S; Yu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2015 Mar; 27(3):203-8. PubMed ID: 25757970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal PCO₂.
    Gazmuri RJ; Ayoub IM; Radhakrishnan J; Motl J; Upadhyaya MP
    Resuscitation; 2012 Feb; 83(2):259-64. PubMed ID: 21854734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The impact of quality of cardiopulmonary resuscitation on post-resuscitation inflammatory reaction in a porcine cardiac arrest model].
    Wu JY; Li CS
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2008 Aug; 20(8):469-71. PubMed ID: 18687173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A randomized comparison of cardiocerebral and cardiopulmonary resuscitation using a swine model of prolonged ventricular fibrillation.
    Mader TJ; Kellogg AR; Walterscheid JK; Lodding CC; Sherman LD
    Resuscitation; 2010 May; 81(5):596-602. PubMed ID: 20176434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing ventilation in conjunction with phased chest and abdominal compression-decompression (Lifestick) resuscitation.
    Kern KB; Hilwig RW; Berg RA; Schock RB; Ewy GA
    Resuscitation; 2002 Jan; 52(1):91-100. PubMed ID: 11801354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel adhesive glove device (AGD) for active compression-decompression (ACD) CPR results in improved carotid blood flow and coronary perfusion pressure in piglet model of cardiac arrest.
    Udassi JP; Udassi S; Shih A; Lamb MA; Porvasnik SL; Zaritsky AL; Haque IU
    Resuscitation; 2012 Jun; 83(6):750-4. PubMed ID: 22209832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous gasping decreases intracranial pressure and improves cerebral perfusion in a pig model of ventricular fibrillation.
    Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG
    Resuscitation; 2006 May; 69(2):329-34. PubMed ID: 16494991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of interposed abdominal pulling-pressing cardiopulmonary resuscitation on hemodynamics and oxygen metabolism in patients with cardiac arrest].
    Gu C; Liu S; Liu K; Xie Y; Wang L
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Nov; 31(11):1406-1410. PubMed ID: 31898574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen requirement during cardiopulmonary resuscitation (CPR) to effect return of spontaneous circulation.
    Yeh ST; Cawley RJ; Aune SE; Angelos MG
    Resuscitation; 2009 Aug; 80(8):951-5. PubMed ID: 19520479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [An experimental study on cardiopulmonary resuscitation by cardiac massage under diaphragmatic muscle for rabbit with cardiac arrest].
    Wang LX; Ding CX; Li X; Gu CH; Sun K; Liu YH
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2008 Dec; 20(12):717-20. PubMed ID: 19111116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study.
    Krupičková P; Mlček M; Huptych M; Mormanová Z; Bouček T; Belza T; Lacko S; Černý M; Neužil P; Kittnar O; Linhart A; Bělohlávek J
    J Transl Med; 2016 Jun; 14(1):163. PubMed ID: 27277706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest?
    Deakin CD; O'Neill JF; Tabor T
    Resuscitation; 2007 Oct; 75(1):53-9. PubMed ID: 17507138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques.
    Aufderheide TP; Pirrallo RG; Yannopoulos D; Klein JP; von Briesen C; Sparks CW; Deja KA; Conrad CJ; Kitscha DJ; Provo TA; Lurie KG
    Resuscitation; 2005 Mar; 64(3):353-62. PubMed ID: 15733766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs.
    Pytte M; Kramer-Johansen J; Eilevstjønn J; Eriksen M; Strømme TA; Godang K; Wik L; Steen PA; Sunde K
    Resuscitation; 2006 Dec; 71(3):369-78. PubMed ID: 17023108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Head Up Cardiopulmonary Resuscitation on Cerebral and Systemic Hemodynamics.
    Ryu HH; Moore JC; Yannopoulos D; Lick M; McKnite S; Shin SD; Kim TY; Metzger A; Rees J; Tsangaris A; Debaty G; Lurie KG
    Resuscitation; 2016 May; 102():29-34. PubMed ID: 26905388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.