These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23075794)
1. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran. Gao W; Lee EJ; Lee SU; Li J; Chung CH; Lee JW J Microbiol Biotechnol; 2012 Oct; 22(10):1412-22. PubMed ID: 23075794 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Lee EJ; Lee BH; Kim BK; Lee JW Mol Biol Rep; 2013 May; 40(5):3609-21. PubMed ID: 23334472 [TBL] [Abstract][Full Text] [Related]
3. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Deswal D; Khasa YP; Kuhad RC Bioresour Technol; 2011 May; 102(10):6065-72. PubMed ID: 21470856 [TBL] [Abstract][Full Text] [Related]
4. Screening of an Alkaline CMCase-Producing Strain and the Optimization of its Fermentation Condition. Zhou J; Yin L; Wu C; Wu S; Lu J; Fang H; Qian Y Curr Pharm Biotechnol; 2020; 21(13):1304-1315. PubMed ID: 31995003 [TBL] [Abstract][Full Text] [Related]
5. Enhanced purification of histidine-tagged carboxymethylcellulase produced by Escherichia coli BL21/LBH-10 and comparison of its characteristics with carboxymethylcellulase without histidine-tag. Kang DU; Lee YS; Lee JW Mol Biol Rep; 2019 Apr; 46(2):1973-1983. PubMed ID: 30712248 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen. Gao W; Kim HJ; Chung CH; Lee JW J Microbiol; 2014 Sep; 52(9):755-61. PubMed ID: 25079953 [TBL] [Abstract][Full Text] [Related]
7. Complete genome sequence and analysis of three kinds of β-agarase of Cellulophaga lytica DAU203 isolated from marine sediment. Lee YS; Choi YL Mar Genomics; 2017 Oct; 35():43-46. PubMed ID: 28528769 [TBL] [Abstract][Full Text] [Related]
8. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Agrebi R; Haddar A; Hajji M; Frikha F; Manni L; Jellouli K; Nasri M Can J Microbiol; 2009 Sep; 55(9):1049-61. PubMed ID: 19898547 [TBL] [Abstract][Full Text] [Related]
9. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
10. [Optimization of plantaricin production by Lactobacillus plantarum ZJ316]. Li J; Song D; Gu Q Wei Sheng Wu Xue Bao; 2008 Jun; 48(6):818-23. PubMed ID: 18720849 [TBL] [Abstract][Full Text] [Related]
11. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Ali Amoozegar M; Zahra Fatemi A; Reza Karbalaei-Heidari H; Reza Razavi M Microbiol Res; 2007; 162(4):369-77. PubMed ID: 16638631 [TBL] [Abstract][Full Text] [Related]
12. Highly thermo-halo-alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans. Kumar V; Syal P; Satyanarayana T Bioprocess Biosyst Eng; 2013 May; 36(5):555-65. PubMed ID: 22932960 [TBL] [Abstract][Full Text] [Related]
13. Effect of Different Carbon Sources on Cellulase Production by Marine Strain Microbulbifer hydrolyticus IRE-31-192. Liu H; Zeng L; Jin Y; Nie K; Deng L; Wang F Appl Biochem Biotechnol; 2019 Jul; 188(3):741-749. PubMed ID: 30680703 [TBL] [Abstract][Full Text] [Related]
14. Fermentation optimization, purification and biochemical characterization of ι-carrageenase from marine bacterium Cellulophaga baltica. Muzyed S; Howlader MM; Tuvikene R Int J Biol Macromol; 2021 Jan; 166():789-797. PubMed ID: 33157133 [TBL] [Abstract][Full Text] [Related]
15. Industrially relevant cellulase production by indigenous thermophilic Bacillus licheniformis TLW-3 strain: Isolation-molecular identification and enzyme yield optimization. Kiran T; Asad W; Ajaz M; Hanif M; Rasool SA Pak J Pharm Sci; 2018 Nov; 31(6):2333-2340. PubMed ID: 30473501 [TBL] [Abstract][Full Text] [Related]
16. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Das A; Paul T; Halder SK; Maity C; Das Mohapatra PK; Pati BR; Mondal KC Pol J Microbiol; 2013; 62(1):31-43. PubMed ID: 23829075 [TBL] [Abstract][Full Text] [Related]
17. Cellulophaga tyrosinoxydans sp. nov., a tyrosinase-producing bacterium isolated from seawater. Kahng HY; Chung BS; Lee DH; Jung JS; Park JH; Jeon CO Int J Syst Evol Microbiol; 2009 Apr; 59(Pt 4):654-7. PubMed ID: 19329582 [TBL] [Abstract][Full Text] [Related]
18. [Screening and Enzyme Production Characteristics of Thermophilic Cellulase-producing Strains]. Feng HM; Qin YS; Li XF; Zhou JX; Peng XW Huan Jing Ke Xue; 2016 Apr; 37(4):1546-52. PubMed ID: 27548981 [TBL] [Abstract][Full Text] [Related]
19. Optimization of cellulase production by Anu ; Kumar S; Kumar A; Kumar V; Singh B Prep Biochem Biotechnol; 2021; 51(7):697-704. PubMed ID: 33302792 [TBL] [Abstract][Full Text] [Related]
20. Isolation and distribution of iridescent Cellulophaga and other iridescent marine bacteria from the Charente-Maritime coast, French Atlantic. Kientz B; Agogué H; Lavergne C; Marié P; Rosenfeld E Syst Appl Microbiol; 2013 Jun; 36(4):244-51. PubMed ID: 23623798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]